Skip to main content

Advertisement

Log in

Phthalates affect the in vitro expansion of human hematopoietic stem cell

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Phthalates are esters of phthalic acid used industrially as plastic additives, however, these are not covalently bound to the polymer matrix and therefore can be released to the environment. The aim of this study was to evaluate the effect of four phthalates: dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), diethyl phthalate (DEP) and diethylhexyl phthalate (DEHP) on the in vitro expansion of human hematopoietic cells from umbilical cord blood. For this, 0.5 × 106 cells/mL were exposure to concentrations ranging from 0.1 to 100 μg/mL and the total cell expansion was determined after 14 days of culture in IMDM-cytokines medium. The control cultures attained 1.31 ± 0.21 × 106 cell/mL, whereas the cultures exposed to DBP, BBP and DEHP showed a reduction from 23 to 81%, 17 to 69% and 15 to 93.5%, respectively. DEP did not affect the total cell expansion. The most significant decrease on total cell expansion was observed at 0.1 μg/mL DBP, 100 μg/mL BBP and 10 μg/mL DEHP (p < 0.05). Additionally, the effect of these compounds on the expansion of hematopoietic progenitors was analyzed by clonogenic assays as colony forming units (CFU). The CFU decreased considerably compared with respect to the control cultures. The reduction was 74.6 and 99.1% at 10 and 100 μg/mL DBP respectively, whereas 100 μg/mL BBP and 100 μg/mL DEHP reduced the CFU expansion in 97.1% and 81%, respectively. Cultures exposed to DEP did not show significant differences. The results demonstrate the toxicity of DBP, BBP and DEHP on the human hematopoietic stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad R, Gautam A, Verma Y, Sedha S, Kumar S (2014) Effects of in utero di-butyl phthalate and butyl benzyl phthalate exposure on offspring development and male reproduction of rat. Environ Sci Pollut Res 21:3156–3165

    Article  CAS  Google Scholar 

  • Andersen HR et al (1999) Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environ Health Perspect 107:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson D, Yu TW, Hincal F (1999) Effect of some phthalate esters in human cells in the comet assay. Teratoge Carcinog Mutag 19:275–280

    Article  CAS  Google Scholar 

  • Andrade PZ, Santos FD, Cabral J, Silva CL (2015) Stem cell bioengineering strategies to widen the therapeutic applications of haematopoietic stem/progenitor cells from umbilical cord blood. J Tissue Eng Regen Med 9:988–1003

    Article  CAS  PubMed  Google Scholar 

  • Andrade-Zaldívar H, Kalixto-Sánchez M, Barba de La Rosa A, De León-Rodríguez A (2014) Expansion of CD34+ human hematopoietic cells from umbilical cord blood using roller bottles. Revista Mexicana de Ingeniería Química 13:379–385

    Google Scholar 

  • Api A (2001) Toxicological profile of diethyl phthalate: a vehicle for fragrance and cosmetic ingredients. Food Chem Toxicol 39:97–108

    Article  CAS  PubMed  Google Scholar 

  • Benachour N, Aris A (2009) Toxic effects of low doses of Bisphenol-A on human placental cells. Toxicol Appl Pharmacol 241:322–328

    Article  CAS  PubMed  Google Scholar 

  • Braun JM, Sathyanarayana S, Hauser R (2013) Phthalate exposure and children’s health Current opinion in pediatrics 25:247

    Article  CAS  PubMed  Google Scholar 

  • Cairo MS, Wagner JE (1997) Placental and/or umbilical cord blood: an alternative source of hematopoietic stem cells for transplantation. Blood 90:4665–4678

    CAS  PubMed  Google Scholar 

  • Calafat AM, McKee RH (2006) Integrating biomonitoring exposure data into the risk assessment process: phthalates [diethyl phthalate and di (2-ethylhexyl) phthalate] as a case study. Environ Health Perspect 114:1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chighizola C, Meroni PL (2012) The role of environmental estrogens and autoimmunity. Autoimmun Rev 11:A493–A501

    Article  CAS  PubMed  Google Scholar 

  • De León A, Mayani H, Ramírez OT (1998) Design, characterization and application of a minibioreactor for the culture of human hematopoietic cells under controlled conditions. In: Cell culture engineering VI. Springer, pp 127–138

  • Genuis SJ, Beesoon S, Lobo RA, Birkholz D (2012) Human elimination of phthalate compounds: blood, urine, and sweat (BUS) study. Sci World J 2012:1–10

    Article  CAS  Google Scholar 

  • Gibson TP, Briggs WA, Boone BJ (1976) Delivery of di-2-ethylhexyl phthalate to patients during hemodialysis. J Lab Clin Med 87:519–524

    CAS  PubMed  Google Scholar 

  • Hays SM, Aylward LL, Kirman CR, Krishnan K, Nong A (2011) Biomonitoring equivalents for di-isononyl phthalate (DINP). Regul Toxicol Pharmacol 60:181–188

    Article  CAS  PubMed  Google Scholar 

  • Huang Y et al (2014) Phthalate levels in cord blood are associated with preterm delivery and fetal growth parameters in Chinese women. PLoS ONE 9:e87430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Kawaguchi M, Yamanaka R, Higuchi T, Ito R, Saito K, Nakazawa H (2005) Evaluation and analysis of exposure levels of di (2-ethylhexyl) phthalate from blood bags. Clin Chim Acta 358:159–166

    Article  CAS  PubMed  Google Scholar 

  • Jones AE, Kahn RH, Groves JT, Napier EA Jr (1975) Phthalate ester toxicity in human cell cultures. Toxicol Appl Pharmacol 31:283–289

    Article  CAS  PubMed  Google Scholar 

  • Kavlock R et al (2002) NTP center for the evaluation of risks to human reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di (2-ethylhexyl) phthalate. Reprod Toxicol 16:529–653

    Article  CAS  PubMed  Google Scholar 

  • Kim S et al (2019) Di-2-ethylhexylphthalate promotes thyroid cell proliferation and DNA damage through activating thyrotropin-receptor-mediated pathways in vitro and in vivo. Food Chem Toxicol 124:265–272

    Article  CAS  PubMed  Google Scholar 

  • Koch HM, Rossbach B, Drexler H, Angerer J (2003) Internal exposure of the general population to DEHP and other phthalates—determination of secondary and primary phthalate monoester metabolites in urine. Environ Res 93:177–185

    Article  CAS  PubMed  Google Scholar 

  • Kostić IS, Anđelković TD, Anđelković DH, Cvetković TP, Pavlović DD (2016) Determination of di (2-ethylhexyl) phthalate in plastic medical devices. Hemijska Industrija 70:159

    Article  Google Scholar 

  • Kovats S (2015) Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol 294:63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krüger T, Cao Y, Kjærgaard SK, Knudsen LE, Bonefeld-Jørgensen EC (2012) Effects of phthalates on the human corneal endothelial cell line B4G12. Int J Toxicol 31:364–371

    Article  CAS  PubMed  Google Scholar 

  • Kusk KO et al (2011) Endocrine potency of wastewater: contents of endocrine disrupting chemicals and effects measured by in vivo and in vitro assays. Environ Toxicol Chem 30:413–426

    Article  CAS  PubMed  Google Scholar 

  • Lagerberg JW, Gouwerok E, Vlaar R, Go M, de Korte D (2015) In vitro evaluation of the quality of blood products collected and stored in systems completely free of di (2-ethylhexyl) phthalate–plasticized materials. Transfusion 55:522–531

    Article  CAS  PubMed  Google Scholar 

  • Latini G (2005) Monitoring phthalate exposure in humans. Clin Chim Acta 361:20–29

    Article  CAS  PubMed  Google Scholar 

  • Latini G, De Felice C, Presta G, Del Vecchio A, Paris I, Ruggieri F, Mazzeo P (2003) In utero exposure to di-(2-ethylhexyl) phthalate and duration of human pregnancy. Environ Health Perspect 111:1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L, Zheng L, Gu Y, Wang J, Zhang Y, Song W (2008) Levels of environmental endocrine disruptors in umbilical cord blood and maternal blood of low-birth-weight infants. Zhonghua yu fang yi xue za [Chin J Prev Med] 42:177–180

    CAS  Google Scholar 

  • Liu Y, Mei C, Liu H, Wang H, Zeng G, Lin J, Xu M (2014) Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A. Biochem Biophys Res Commun 451:592–598

    Article  CAS  PubMed  Google Scholar 

  • Louis KS, Siegel AC (2011) Cell viability analysis using trypan blue: manual and automated methods. In: Mammalian cell viability. Springer, pp 7–12

  • Lovekamp T, Davis B (2001) Mono-(2-ethylhexyl) phthalate suppresses aromatase transcript levels and estradiol production in cultured rat granulosa cells. Toxicol Appl Pharmacol 172:217–224

    Article  CAS  PubMed  Google Scholar 

  • Main KM et al (2005) Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect 114:270–276

    Article  CAS  PubMed Central  Google Scholar 

  • Mankidy R, Wiseman S, Ma H, Giesy JP (2013) Biological impact of phthalates. Toxicol Lett 217:50–58

    Article  CAS  PubMed  Google Scholar 

  • Manz P, Cadeddu R-P, Wilk M, Fritz B, Haas R, Wenzel F (2014) Impact of Di (2-ethylhexyl) phthalate on migration rate of human promyelocytic leukemia cells (HL-60). Clin Hemorheol Microcirc 58:241–246

    PubMed  Google Scholar 

  • Manz P, Cadeddu R-P, Wilk M, Fischer JC, Fritz B, Haas R, Wenzel F (2015) Influence of Di (2-ethylhexyl) phthalate on migration rate and differentiation of human hematopoietic stem and progenitor cells (CD34+). Clin Hemorheol Microcirc 61:111–118

    Article  CAS  PubMed  Google Scholar 

  • Marsee K, Woodruff TJ, Axelrad DA, Calafat AM, Swan SH (2006) Estimated daily phthalate exposures in a population of mothers of male infants exhibiting reduced anogenital distance. Environ Health Perspect 114:805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayani H et al (1998) Kinetics of hematopoiesis in dexter-type long-term cultures established from human umbilical cord blood cells. Stem Cells 16:127–135

    Article  CAS  PubMed  Google Scholar 

  • Meeker JD, Sathyanarayana S, Swan SH (2009) Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos Trans R Soc B: Biol Sci 364:2097–2113

    Article  CAS  Google Scholar 

  • Melzak KA, Uhlig S, Kirschhöfer F, Brenner-Weiss G, Bieback K (2018) The blood bag plasticizer di-2-ethylhexylphthalate causes red blood cells to form stomatocytes, possibly by inducing lipid flip-flop. Transfus Med Hemother 45:413–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Mierzejewska K et al (2015) Hematopoietic stem/progenitor cells express several functional sex hormone receptors—novel evidence for a potential developmental link between hematopoiesis and primordial germ cells. Stem Cells Dev 24:927–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortensen GK, Main KM, Andersson A-M, Leffers H, Skakkebæk NE (2005) Determination of phthalate monoesters in human milk, consumer milk, and infant formula by tandem mass spectrometry (LC–MS–MS). Anal Bioanal Chem 382:1084–1092

    Article  CAS  PubMed  Google Scholar 

  • Pereira C, Clarke E, Damen J (2007) Hematopoietic colony-forming cell assays. In: Stem cell assays. Springer, pp 177–208

  • Phelan K, May KM (2007) Basic techniques in mammalian cell tissue culture. Curr Protoc Cell Biol 1.1:1–1.1.22

    Google Scholar 

  • Phillips BJ, Anderson D, Gangolli SD (1986) Studies on the genetic effects of phthalic acid esters on cells in culture. Environ Health Perspect 65:263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarma NJ, Takeda A, Yaseen NR (2010) Colony forming cell (CFC) assay for human hematopoietic cells J Vis Exp 46:2195

    Google Scholar 

  • Shaz BH, Grima K, Hillyer CD (2011) 2-(Diethylhexyl) phthalate in blood bags: is this a public health issue? Transfusion 51:2510–2517

    Article  CAS  PubMed  Google Scholar 

  • Sicińska P (2018) Di-n-butyl phthalate, butylbenzyl phthalate and their metabolites induce haemolysis and eryptosis in human erythrocytes. Chemosphere 203:44–53

    Article  CAS  PubMed  Google Scholar 

  • Silva MJ, Reidy JA, Samandar E, Herbert AR, Needham LL, Calafat AM (2005) Detection of phthalate metabolites in human saliva. Arch Toxicol 79:647–652

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Li SS-L (2012) Epigenetic effects of environmental chemicals bisphenol a and phthalates. Int J Mol Sci 13:10143–10153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Lawrence W, Autian J (1972) Teratogenicity of phthalate esters in rats. J Pharm Sci 61:51–55

    Article  CAS  PubMed  Google Scholar 

  • Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35:667–749

    Article  CAS  Google Scholar 

  • Steiner I, Scharf L, Fiala F, Washüttl J (1998) Migration of di-(2-ethylhexyl) phthalate from PVC child articles into saliva and saliva simulant. Food Addit Contam 15:812–817

    Article  CAS  PubMed  Google Scholar 

  • Thomas JA, Thomas MJ, Gangolli SD (1984) Biological effects of di-(2-ethylhexyl) phthalate and other phthalic acid esters. CRC Crit Reviews Toxicol 13:283–317

    Article  CAS  Google Scholar 

  • Tranfo G, Paci E, Pigini D, Bonanni RC, Capanna S, De Carolis C, Iavicoli S (2014) Phthalate metabolites in amniotic fluid and maternal urine samples. J Environ Prot 5:1411

    Article  CAS  Google Scholar 

  • Witorsch RJ, Thomas JA (2010) Personal care products and endocrine disruption: a critical review of the literature. Crit Rev Toxicol 40:1–30

    Article  CAS  PubMed  Google Scholar 

  • Wognum B, Yuan N, Lai B, Miller CL (2013) Colony forming cell assays for human hematopoietic progenitor cells. In: Basic cell culture protocols. Springer, pp 267–283

  • Zhu J, Phillips SP, Feng Y-L, Yang X (2006) Phthalate esters in human milk: concentration variations over a 6-month postpartum time. Environ Sci Technol 40:5276–5281

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J. Flores, T. Ortiz, A. Gutiérrez, thank the National Council of Science and Technology (CONACYT) for their scholarships 591428, 298411, 297341, respectively. We would like to thank the partial financial support from CONACyT-Fondo Sectorial SALUD 233340 and CONACyT Problemas Nacionales 2017-4601. We thank Victor E. Balderas for his technical support and the comments and Graham M. Tippett for the English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio De León-Rodríguez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-García, A.K., Flores-Kelly, J.M., Ortiz-Rodríguez, T. et al. Phthalates affect the in vitro expansion of human hematopoietic stem cell. Cytotechnology 71, 553–561 (2019). https://doi.org/10.1007/s10616-019-00300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-019-00300-x

Keywords

Navigation