Skip to main content

Advertisement

Log in

Plant-derived polysaccharides activate dendritic cell-based anti-cancer immunity

  • Review
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Today, cancers pose a major public health burden. Although a myriad of cancer treatments are available, only a few have achieved clinical efficacy. This is partly attributed to cancers capability to evade host immunity by converting dendritic cells (DCs) from potent stimulators to negative modulators of immunity. Dendritic cell-based immunotherapy attempts to resolve this problem by manipulating the functional characteristics of DCs. Plant-derived polysaccharides (PDPs) can stimulate the maturation of DCs conferring on them the capacity to present internalised tumorigenic antigens to naïve T cells and subsequently priming T cells to eliminate tumours. PDPs have been used as immune modulators and later as anti-cancer agents by Traditional Chinese Medicine practitioners for centuries. They are abundant in nature and form a large group of heterogeneous though structurally related macromolecules that exhibit diverse immunological properties. They can induce antigen pulsed DCs to acquire functional characteristics in vitro which can subsequently be re-introduced into cancer patients. They can also be used as adjuvants in DC-based vaccines or independently for their intrinsic anti-tumour activities. Clinically, some in vitro generated DCs have been shown to be both safe and immunogenic although their clinical application is limited in part by unsatisfactory functional maturation as well as impaired migration to draining lymph nodes where T cells reside. We review the relative potencies of individual PDPs to induce both phenotypic and functional maturation in DCs, their relative abilities to activate anti-cancer immunity, the possible mechanisms by which they act and also the challenges surrounding their clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu R et al (2015) Anti-metastatic effects of the sulfated polysaccharide ascophyllan isolated from Ascophyllum nodosum on B16 melanoma. Biochem Biophys Res Commun 458:727–732

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  • Bachem A et al (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c + CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 207:1273–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banchereau J et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  CAS  PubMed  Google Scholar 

  • Bennaceur K, Chapman J, Brikci-Nigassa L, Sanhadji K, J-l Touraine, Portoukalian J (2008) Dendritic cells dysfunction in tumour environment. Cancer Lett 272:186–196

    Article  CAS  PubMed  Google Scholar 

  • Boele LCL, Bajramovic JJ, De Vries AMBC, Voskampvisser I, Kaman WE, Der Kleij DV (2009) Activation of Toll-like receptors and dendritic cells by a broad range of bacterial molecules. Cell Immunol 255:17–25

    Article  CAS  PubMed  Google Scholar 

  • Boullart AI et al (2008) Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunol Immunother 57:1589–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breckpot K, Escors D (2009) Dendritic cells for active anti-cancer immunotherapy: targeting activation pathways through genetic modification. Endocr Metab Immune Disord Drug Targets 9:328–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6:33–43

    Article  CAS  PubMed  Google Scholar 

  • Carreno BM et al (2013) IL-12p70–producing patient DC vaccine elicits Tc1-polarized immunity. J Clin Invest 123:3383–3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang J-M, Hung L-M, Chyan Y-J, Cheng C-M, Wu R-Y (2011) Carthamus tinctorius enhances the antitumor activity of dendritic cell vaccines via polarization toward Th1 cytokines and increase of cytotoxic T lymphocytes. Evid Based Complement Altern Med 2011:274858. https://doi.org/10.1093/ecam/nen068

    Article  Google Scholar 

  • Chang W-T et al (2013) Specific Dioscorea phytoextracts enhance potency of TCL-loaded DC-based cancer vaccines. Evid Based Complement Altern Med 2013:932040. https://doi.org/10.1155/2013/932040

    Article  Google Scholar 

  • Chang WT, Lai TH, Chyan YJ, Yin SY, Chen YH, Wei WC, Yang N-S (2015) Specific medicinal plant polysaccharides effectively enhance the potency of a DC-based vaccine against mouse mammary tumor metastasis. PLoS ONE 10:e0122374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang CLL et al (2013) A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin Cancer Res 19:4801–4815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF (2005) Cutting edge: type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol 174:4465–4469

    Article  CAS  PubMed  Google Scholar 

  • Dalod M, Chelbi R, Malissen B, Lawrence T (2014) Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J 33:1104–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amico A, Wu L (2003) The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J Exp Med 198:293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohnal AM et al (2009) Comparative evaluation of techniques for the manufacturing of dendritic cell-based cancer vaccines. J Cell Mol Med 13:125–135

    Article  CAS  PubMed  Google Scholar 

  • Feng H et al (2015) Sulfated radix cyathulae officinalis polysaccharides act as adjuvant via promoting the dendritic cell maturation and suppressing treg frequency. Immunol Invest 44:288–308

    Article  CAS  PubMed  Google Scholar 

  • Feng H et al (2017) Phosphorylated radix cyathulae officinalis polysaccharides act as adjuvant via promoting dendritic cell maturation. Molecules 22:106. https://doi.org/10.3390/molecules22010106

    Article  CAS  Google Scholar 

  • Ferreira SS, Passos CP, Madureira P, Vilanova M, Coimbra MA (2015) Structure–function relationships of immunostimulatory polysaccharides: a review carbohydrate polymers. Carbohydr Polym 132:378–396

    Article  CAS  PubMed  Google Scholar 

  • Fu R-H et al (2014) Dryocrassin suppresses immunostimulatory function of dendritic cells and prolongs skin allograft survival. Cell Transpl 23:641–656

    Article  Google Scholar 

  • Gallo PM, Gallucci S (2013) The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front Immunol 4:138. https://doi.org/10.3389/fimmu.2013.00138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatto D et al (2013) The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nat Immunol 14:446–453

    Article  CAS  PubMed  Google Scholar 

  • Hamuti A, Li J, Zhou F, Aipire A, Ma J, Yang J, Li J (2017) Capparis spinosa fruit ethanol extracts exert different effects on the maturation of dendritic cells. Molecules 22:97. https://doi.org/10.3390/molecules22010097

    Article  CAS  Google Scholar 

  • Hovden AO, Appel S (2010) The first dendritic cell-based therapeutic cancer vaccine is approved by the FDA. Scand J Immunol 72:554

    Article  PubMed  Google Scholar 

  • Huang D, Nie S, Jiang L, Xie M (2014) A novel polysaccharide from the seeds of Plantago asiatica L. induces dendritic cells maturation through toll-like receptor 4. Int Immunopharmacol 18:236–243

    Article  CAS  PubMed  Google Scholar 

  • Huang Y et al (2016) Rehmannia glutinosa polysaccharide liposome as a novel strategy for stimulating an efficient immune response and their effects on dendritic cells. Int J Nanomed 11:6795–6808

    Article  CAS  Google Scholar 

  • Jego G, Pascual V, Palucka AK, Banchereau J (2004) Dendritic cells control B cell growth and differentiation. In: Stohl W (ed) B cell trophic factors and B cell antagonism in autoimmune disease. Curr Dir Autoimmun, vol 8. Karger, Basel, pp 124–139

    Chapter  Google Scholar 

  • Jiang M-H, Zhu L, Jiang J-G (2010) Immunoregulatory actions of polysaccharides from Chinese herbal medicine. Expert Opin Ther Targets 14:1367–1402

    Article  CAS  PubMed  Google Scholar 

  • Jiang L-M, Nie S-P, Zhou H-L, Huang D-F, Xie M-Y (2014) Carboxymethylation enhances the maturation-inducing activity in dendritic cells of polysaccharide from the seeds of Plantago asiatica L. Int Immunopharmacol 22:324–331

    Article  CAS  PubMed  Google Scholar 

  • Kalinski P (2009) Dendritic cells in immunotherapy of established cancer: roles of signals 1, 2, 3 and 4. Curr Opin Investig Drugs 10:526–535

    CAS  Google Scholar 

  • Kato H et al (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105

    Article  CAS  PubMed  Google Scholar 

  • Kikete S, Chu X, Wang L, Bian Y (2016) Endogenous and tumour-derived microRNAs regulate cross-presentation in dendritic cells and consequently cytotoxic T cell function. Cytotechnology 68:2223–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY et al (2007) Angelan isolated from Angelica gigas Nakai induces dendritic cell maturation through toll-like receptor 4. Int Immunopharmacol 7:78–87

    Article  CAS  PubMed  Google Scholar 

  • Kim JY et al (2011) Adjuvant effect of a natural TLR4 ligand on dendritic cell-based cancer immunotherapy. Cancer Lett 313:226–234

    Article  CAS  PubMed  Google Scholar 

  • Kim HS et al (2013) A polysaccharide isolated from Pueraria lobata enhances maturation of murine dendritic cells. Int J Biol Macromol 52:184–191

    Article  CAS  PubMed  Google Scholar 

  • Kolanowski ST, Sritharan L, Lissenberg-Thunnissen SN, Van Schijndel GM, Van Ham SM, Ten Brinke A (2014) Comparison of media and serum supplementation for generation of monophosphoryl lipid A/interferon-γ–matured type I dendritic cells for immunotherapy. Cytotherapy 16:826–834

    Article  CAS  PubMed  Google Scholar 

  • Lee AW et al (2002) A clinical grade cocktail of cytokines and PGE 2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy. Vaccine 20:A8–A22

    Article  CAS  PubMed  Google Scholar 

  • Leung M, Liu C, Koon J, Fung K (2006) Polysaccharide biological response modifiers. Immunol Lett 105:101–114

    Article  CAS  PubMed  Google Scholar 

  • Li X, Xu W, Chen J (2010) Polysaccharide purified from Polyporus umbellatus (Per) Fr induces the activation and maturation of murine bone-derived dendritic cells via toll-like receptor 4. Cell Immunol 265:50–56

    Article  CAS  PubMed  Google Scholar 

  • Li CY et al (2011) Honokiol inhibits LPS-induced maturation and inflammatory response of human monocyte-derived dendritic cells. J Cell Physiol 226:2338–2349

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (2012a) Caveolin-1–mediated negative signaling plays a critical role in the induction of regulatory dendritic cells by DNA and protein coimmunization. J Immunol 189:2852–2859

    Article  CAS  PubMed  Google Scholar 

  • Li X et al (2012b) Maturation of murine bone marrow-derived dendritic cells induced by Radix Glycyrrhizae polysaccharide. Molecules 17:6557–6568

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu M, Yang S-T (2014) Dendritic cells derived from pluripotent stem cells: potential of large scale production. World J Stem Cells 6:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Wang X, Wang W, Luo J, Aipire A, Li J, Zhang F (2015) Pleurotus ferulae water extract enhances the maturation and function of murine bone marrow-derived dendritic cells through TLR4 signaling pathway. Vaccine 33:1923–1933

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Nussenzweig MC (2010) Origin and development of dendritic cells. Immunol Rev 234:45–54

    Article  CAS  PubMed  Google Scholar 

  • Lui G, Manches O, Angel J, Molens J-P, Chaperot L, Plumas J (2009) Plasmacytoid dendritic cells capture and cross-present viral antigens from influenza-virus exposed cells. PLoS ONE 4:e7111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz MB, Schuler G (2002) Immature, semi-mature and fully mature dendritic cells: Which signals induce tolerance or immunity? Trends Immunol 23:445–449

    Article  CAS  PubMed  Google Scholar 

  • Ma H-D, Deng Y-R, Tian Z, Lian Z-X (2013) Traditional Chinese medicine and immune regulation. Clin Rev Allergy Immunol 44:229–241

    Article  PubMed  Google Scholar 

  • Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K, McKenna HJ (1996) Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 184:1953–1962

    Article  CAS  PubMed  Google Scholar 

  • Maraskovsky E et al (2000) In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 96:878–884

    CAS  PubMed  Google Scholar 

  • McKenna K, Beignon A-S, Bhardwaj N (2005) Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol 79:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meixlsperger S et al (2013) CD141+ dendritic cells produce prominent amounts of IFN-α after dsRNA recognition and can be targeted via DEC-205 in humanized mice. Blood 121:5034–5044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258

    Article  CAS  PubMed  Google Scholar 

  • Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A (2005) Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 6:769–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien M et al (2016) CD4 receptor is a key determinant of divergent HIV-1 sensing by plasmacytoid dendritic cells. PLoS Pathog 12:e1005553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada H et al (2010) Induction of CD8+ T-cell responses against novel glioma–associated antigen peptides and clinical activity by vaccinations with α-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29:330–336

    Article  PubMed  PubMed Central  Google Scholar 

  • Park MJ et al (2014) Platycodon grandiflorum polysaccharide induces dendritic cell maturation via TLR4 signaling. Food Chem Toxicol 72:212–220

    Article  CAS  PubMed  Google Scholar 

  • Pedra JH, Cassel SL, Sutterwala FS (2009) Sensing pathogens and danger signals by the inflammasome. Curr Opin Immunol 21:10–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin T et al (2017) Selenizing Hericium erinaceus polysaccharides induces dendritic cells maturation through MAPK and NF-κB signaling pathways. Int J Biol Macromol 97:287–298

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramadan G, Konings S, Kurup V, Keever-Taylor C (2004) Generation of Aspergillus-and CMV-specific T-cell responses using autologous fast DC. Cytotherapy 6:223–234

    Article  CAS  PubMed  Google Scholar 

  • Reid DM, Gow NA, Brown GD (2009) Pattern recognition: recent insights from Dectin-1. Curr Opin Immunol 21:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis e Sousa C (2006) Dendritic cells in a mature age. Nat Rev Immunol 6:476–483

    Article  CAS  PubMed  Google Scholar 

  • Reizis B (2010) Regulation of plasmacytoid dendritic cell development. Curr Opin Immunol 22:206–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy A, Singh MS, Upadhyay P, Bhaskar S (2013) Nanoparticle mediated co-delivery of paclitaxel and a TLR-4 agonist results in tumor regression and enhanced immune response in the tumor microenvironment of a mouse model. Int J Pharm 445:171–180

    Article  CAS  PubMed  Google Scholar 

  • Sabado RL, Balan S, Bhardwaj N (2017) Dendritic cell-based immunotherapy. Cell Res 27:74–95

    Article  CAS  PubMed  Google Scholar 

  • Sallusto F, Cella M, Danieli C, Lanzavecchia A (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182:389–400

    Article  CAS  PubMed  Google Scholar 

  • Santander S, Aoki M, Hernandez J, Pombo M, Moins-Teisserenc H, Mooney N, Fiorentino S (2011) Galactomannan from Caesalpinia spinosa induces phenotypic and functional maturation of human dendritic cells. Int Immunopharmacol 11:652–660

    Article  CAS  PubMed  Google Scholar 

  • Schwendener RA (2014) Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines 2:159–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senju S et al (2010) Pluripotent stem cells as source of dendritic cells for immune therapy. Int J Hematol 91:392–400

    Article  PubMed  Google Scholar 

  • Shao P, Zhao L-H, Pan J-P (2006) Regulation on maturation and function of dendritic cells by Astragalus mongholicus polysaccharides. Int Immunopharmacol 6:1161–1166

    Article  CAS  PubMed  Google Scholar 

  • Sheng KC, Pouniotis DS, Wright MD, Tang CK, Lazoura E, Pietersz GA, Apostolopoulos V (2006) Mannan derivatives induce phenotypic and functional maturation of mouse dendritic cells. Immunology 118:372–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin BR et al (2013) Promoting effect of polysaccharide isolated from Mori fructus on dendritic cell maturation. Food Chem Toxicol 51:411–418

    Article  CAS  PubMed  Google Scholar 

  • Shinchi H et al (2015) Enhancement of the immunostimulatory activity of a TLR7 ligand by conjugation to polysaccharides. Bioconjug Chem 26:1713–1723

    Article  CAS  PubMed  Google Scholar 

  • Škoberne M, Beignon A-S, Bhardwaj N (2004) Danger signals: a time and space continuum. Trends Mol Med 10:251–257

    Article  CAS  PubMed  Google Scholar 

  • Spörri R, Reis e Sousa C (2005) Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat Immunol 6:163–170

    Article  CAS  PubMed  Google Scholar 

  • Steinman RM (2007) Dendritic cells: versatile controllers of the immune system. Nat Med 13:1155–1159

    Article  CAS  PubMed  Google Scholar 

  • Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30:1–22

    Article  CAS  PubMed  Google Scholar 

  • Tian J et al (2014a) Ficus carica polysaccharides promote the maturation and function of dendritic cells. Int J Mol Sci 15:12469–12479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Li X, Li H, Lu Q, Sun G, Chen H (2014b) Astragalus mongholicus regulate the Toll-like-receptor 4 meditated signal transduction of dendritic cells to restrain stomach cancer cells. Afr J Tradit Complement Altern Med 11:92–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong H et al (2017) Bupleurum chinense polysaccharide inhibit adhesion of human melanoma cells via blocking β1 integrin function. Carbohydr Polym 156:244–252

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya L, Singh J, Agarwal V, Tewari RP (2013) Biomedical applications of carboxymethyl chitosans. Carbohydr Polym 91:452–466

    Article  CAS  PubMed  Google Scholar 

  • van de Laar L, van den Bosch A, van der Kooij SW, Janssen HL, Coffer PJ, van Kooten C, Woltman AM (2010) A nonredundant role for canonical NF-κB in human myeloid dendritic cell development and function. J Immunol 185:7252–7261

    Article  CAS  PubMed  Google Scholar 

  • Verdijk P, Aarntzen EH, Punt CJ, de Vries IJM, Figdor CG (2008) Maximizing dendritic cell migration in cancer immunotherapy. Expert Opin Biol Ther 8:865–874

    Article  CAS  PubMed  Google Scholar 

  • Vremec D, Lieschke GJ, Dunn AR, Robb L, Metcalf D, Shortman K (1997) The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. Eur J Immunol 27:40–44

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang L (2009) Physicochemical properties and antitumor activities for sulfated derivatives of lentinan. Carbohydr Res 344:2209–2216

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-S, Chi K-H, Chu R-M (2007) Cytokine profiles of canine monocyte-derived dendritic cells as a function of lipopolysaccharide-or tumor necrosis factor-alpha-induced maturation. Vet Immunol Immunopathol 118:186–198

    Article  CAS  PubMed  Google Scholar 

  • Youn J, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor bearing mice. J Immunol 181:5791–5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Kodys K, Li K, Szabo G (2013) Human type 2 myeloid dendritic cells produce interferon-λ and amplify interferon-α in response to hepatitis C virus infection. Gastroenterology 144:414–425. https://doi.org/10.1053/j.gastro.2012.10.034

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Zhang Y, Shen Y, Zhou H, Yu X (2013) Lycium barbarum polysaccharides induce Toll-like receptor 2-and 4-mediated phenotypic and functional maturation of murine dendritic cells via activation of NF-κB. Mol Med Rep 8:1216–1220

    Article  CAS  PubMed  Google Scholar 

  • Zhu N et al (2016) Comparison of immunoregulatory effects of polysaccharides from three natural herbs and cellular uptake in dendritic cells. Int J Biol Macromol 93:940–951

    Article  CAS  PubMed  Google Scholar 

  • Zou Y et al (2011) Modulation of phenotypic and functional maturation of murine dendritic cells (DCs) by purified Achyranthes bidentata polysaccharide (ABP). Int Immunopharmacol 11:1103–1108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This paper was supported by National Natural Science Foundation of China (NSFC No. 81573707) and The Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, No. IRT_14R41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Bian.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikete, S., Luo, L., Jia, B. et al. Plant-derived polysaccharides activate dendritic cell-based anti-cancer immunity. Cytotechnology 70, 1097–1110 (2018). https://doi.org/10.1007/s10616-018-0202-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-018-0202-z

Keywords

Navigation