, Volume 70, Issue 1, pp 31–44 | Cite as

Optimisation of a potency assay for the assessment of immunomodulative potential of clinical grade multipotent mesenchymal stromal cells

  • Irene Oliver-VilaEmail author
  • Carmen Ramírez-Moncayo
  • Marta Grau-Vorster
  • Sílvia Marín-Gallén
  • Marta Caminal
  • Joaquim VivesEmail author
Methods Paper


Clinical use of multipotent Mesenchymal Stromal Cell (MSC)-based medicinal products requires their production in compliance with Good Manufacturing Practices, thus ensuring that the final drug product meets specifications consistently from batch to batch in terms of cell viability, identity, purity and potency. Potency relates to the efficacy of the medicine in its target clinical indication, so adequate release tests need to be defined and validated as quality controls. Herein we report the design and optimisation of parameters affecting the performance of an in vitro cell-based assay for assessing immunomodulatory potential of clinical grade MSC for human use, based on their capacity to inhibit proliferation of T lymphocytes under strong polyclonal stimuli. The resulting method was demonstrated to be reproducible and relatively simple to execute. Two case studies using clinical grade MSC are presented as examples to illustrate the applicability of the methodology described in this work.


Multipotent Mesenchymal Stromal Cell Immunomodulative potential Potency assay Cellular therapy Cell culture Lymphocyte Cell-based assay Co-culture 



The authors would like to acknowledge J. García-López, A. Pla, J. A. Marco, for technical support and advice; E. Valdivia and N. Martínez, for supplying blood samples; and M. Blanco and M. Codinach, for supplying MSC. We also want to thank Dr. Sergi Querol for critical review of the manuscript. This work was supported by “Fundació la Marató de TV3” (expedient No. 122831) and the Spanish Cell Therapy Network (TerCel, expedient No. RD16/0011/0028); and developed in the context of AdvanceCat with the support of ACCIÓ (Catalonia Trade & Investment; Generalitat de Catalunya) under the Catalonian ERDF operational program (European Regional Development Fund) 2014–2020. Figure 1 has been produced using Servier Medical Art (


  1. Bianco P, Cao X, Frenette PS, Mao JJ, Robey PG, Simmons PJ, Wang CY (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 19:35–42CrossRefGoogle Scholar
  2. Bloom DD, Centanni JM, Bhatia N, Emler CA, Drier D, Leverson GE, McKenna DH, Gee AP, Lindblad R, Hei DJ, Hematti P (2015) A reproducible immunopotency assay to measure mesenchymal stromal cell-mediated T-cell suppression. Cytotherapy 17:140–151. CrossRefGoogle Scholar
  3. Bocelli-Tyndall C, Zajac P, Di Maggio N, Trella E, Benvenuto F, Iezzi G, Scherberich A, Barbero A, Schaeren S, Pistoia V, Spagnoli G, Vukcevic M, Martin I, Tyndall A (2010) Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells. Arthritis Rheum 62:3815–3825. CrossRefGoogle Scholar
  4. Bravery CA, Carmen J, Fong T, Oprea W, Hoogendoorn KH, Woda J, Burger SR, Rowley JA, Bonyhadi ML, Van’t Hof W (2013) Potency assay development for cellular therapy products: an ISCT review of the requirements and experiences in the industry. Cytotherapy 15:9–19. CrossRefGoogle Scholar
  5. Codinach M, Blanco M, Ortega I, Lloret M, Reales L, Coca MI, Torrents S, Doral M, Oliver-Vila I, Requena-Montero M, Vives J, Garcia-López J (2016) Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow-derived multipotent mesenchymal stromal cells. Cytotherapy 18:1197–1208. CrossRefGoogle Scholar
  6. de Wolf C, van de Bovenkamp M, Hoefnagel M (2017) Regulatory perspective on in vitro potency assays for human mesenchymal stromal cells used in immunotherapy. Cytotherapy 19:784–797. CrossRefGoogle Scholar
  7. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. CrossRefGoogle Scholar
  8. François M, Copland IB, Yuan S, Romieu-Mourez R, Waller EK, Galipeau J (2012) Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-γ licensing. Cytotherapy 14:147–152. CrossRefGoogle Scholar
  9. Galipeau J (2013) The mesenchymal stromal cells dilemma—Does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy 15:2–8. CrossRefGoogle Scholar
  10. Galipeau J, Krampera M, Barrett J, Dazzi F, Deans RJ, DeBruijn J, Dominici M, Fibbe WE, Gee AP, Gimble JM, Hematti P, Koh MBC, LeBlanc K, Martin I, McNiece IK, Mendicino M, Oh S, Ortiz L, Phinney DG, Planat V, Shi Y, Stroncek DF, Viswanathan S, Weiss DJ, Sensebe L (2015) International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 18:151–159. CrossRefGoogle Scholar
  11. Guadix JA, Zugaza JL, Gálvez-martín P (2017) Characteristics, applications and prospects of mesenchymal stem cells in cell therapy. Med Clínica (English Ed.) 148:408–414. CrossRefGoogle Scholar
  12. Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10:709–716CrossRefGoogle Scholar
  13. Ketterl N, Brachtl G, Schuh C, Bieback K, Schallmoser K, Reinisch A, Strunk D (2015) A robust potency assay highlights significant donor variation of human mesenchymal stem/progenitor cell immune modulatory capacity and extended radio-resistance. Stem Cell Res Ther 6:236. CrossRefGoogle Scholar
  14. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–896. CrossRefGoogle Scholar
  15. Lyons AB, Parish CR (1994) Determination of lymphocyte division by flow cytometry. J Immunol Methods 171:131–137. CrossRefGoogle Scholar
  16. Moll G, Alm JJ, Davies LC, Von Bahr L, Heldring N, Stenbeck-Funke L, Hamad OA, Hinsch R, Ignatowicz L, Locke M, Lönnies H, Lambris JD, Teramura Y, Nilsson-Ekdahl K, Nilsson B, Le Blanc K (2014) Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells 32:2430–2442. CrossRefGoogle Scholar
  17. Nombela-Arrieta C, Ritz J, Silberstein LE (2011) The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 12:126–131. CrossRefGoogle Scholar
  18. Prockop DJ (2017) The exciting prospects of new therapies with mesenchymal stromal cells. Cytotherapy 19:1–8. CrossRefGoogle Scholar
  19. Quah BJC, Parish CR (2012) New and improved methods for measuring lymphocyte proliferation in vitro and in vivo using CFSE-like fluorescent dyes. J Immunol Methods 379:1–14. CrossRefGoogle Scholar
  20. Reis M, Ogonek J, Qesari M, Borges NM, Nicholson L, Preußner L, Dickinson AM, Wang X-N, Weissinger EM, Richter A (2016) Recent Developments in Cellular Immunotherapy for HSCT-Associated Complications. Front Immunol 7:500. CrossRefGoogle Scholar
  21. Schimke MM, Marozin S, Lepperdinger G (2015) Patient-specific age: the other side of the coin in advanced mesenchymal stem cell therapy. Front Physiol 6:362. CrossRefGoogle Scholar
  22. Schneider CK et al (2010) Challenges with advanced therapy medicinal products and how to meet them. Nat Rev Drug Discov 9:195–201. CrossRefGoogle Scholar
  23. Schnitzler A, Verma A, Kehoe D, Jing D, Murrell J, Der K, Aysola M, Rapiejko P, Punreddy S, Rook MS (2016) Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: current technologies and challenges. Biochem Eng J 108:3–13. CrossRefGoogle Scholar
  24. Sensebé L, Bourin P, Tarte K (2011) Good manufacturing practices production of mesenchymal stem/stromal cells. Hum Gene Ther 22:19–26. CrossRefGoogle Scholar
  25. Vives J, Oliver-Vila I, Pla A (2015) Quality compliance in the shift from cell transplantation to cell therapy in non-pharma environments. Cytotherapy 17:1009–1014. CrossRefGoogle Scholar
  26. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416. CrossRefGoogle Scholar
  27. Wang Y, Chen X, Cao W, Shi Y (2014) Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 15:1009–1016. CrossRefGoogle Scholar
  28. Woods EJ, Thirumala S, Badhe-Buchanan S, Clarke D, Mathew A (2016) Off the shelf cellular therapeutics: factors to consider during cryopreservation and storage of human cells for clinical use. Cytotherapy 18:697–711. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i JordàBarcelonaSpain
  2. 2.Departament de MedicinaUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Musculoskeletal Tissue Engineering Group, Vall d’Hebron Research Institute (VHIR)Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations