, Volume 70, Issue 2, pp 641–649 | Cite as

Clinical significance and functional validation of inorganic pyrophosphatase in diffuse large B cell lymphoma in humans

  • Limei LiEmail author
  • Aruna
  • Dehong Luo
  • Arong Jin
Original Article


Diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin’s lymphoma, displays marked heterogeneity. Although it is usually curable, 30–40% of patients die within 1–2 years due to refractory treatment or cancer relapse. In different types of cancer in humans, inorganic pyrophosphatase (PPA1) is deregulated, thereby contributing to tumorigenesis by supplying the tumor with an enormous energy source. However, the role of PPA1 in DLBCL is still unclear. Here, we analized PPA1 in 65 patients with DLBCL and 20 patients with reactive hyperplasia of the lymph nodes (control). The PPA1 level was significantly higher in patients with DLBCL than in control subjects (p < 0.05), and it is closely associated with B symptoms (i.e., fever, night sweats, and weight loss) and the IPI score (p < 0.05). Furthermore, PPA1 mRNA and protein levels were higher in most DLBCL cell lines than in the control HMy2.CIR cell line. Lastly, we investigated the effects of PPA1 knockdown on the proliferation and survival of the DLBCL cell line. We found that p53 and p21 expression decreased in PPA1-silenced DLBCL cells. In addition, cell proliferation decreased and cell apoptosis increased. In conclusion, PPA1 is a novel molecule that may be useful in the development and prognosis of DLBCL in the future.


Diffuse large B-cell lymphoma Inorganic pyrophosphatase Prognosis Proliferation 



This work was supported by Inner Mongolia People’s Hospital Fund (No. 201705).

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest.


  1. Akkaya B, Salim O, Akkaya H, Ozcan M, Yucel OK, Erdem R, Iltar U, Undar L (2016) C-MYC and BCL2 translocation frequency in diffuse large B-cell lymphomas: a study of 97 patients. Indian J Pathol Microbiol 59:41–46Google Scholar
  2. Alizadeh AA, Eisen MB, Amini RM, Book M, Roos G, Erlanson M, Linderoth J, Dictor M, Jerkeman M, Cavallin-Stahl E, et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511CrossRefGoogle Scholar
  3. Baykov AA, Cooperman BS, Goldman A, Lahti R (1999) Cytoplasmic inorganic pyrophosphatase. Progr Mol Subcell Biol 23:127–150CrossRefGoogle Scholar
  4. Berglund M, Thunberg U, Amini RM, Book M, Roos G, Erlanson M, Linderoth J, Dictor M, Jerkeman M, Cavallin-Ståhl E, Sundström C, Rehn-Eriksson S, Backlin C, Hagberg H, Rosenquist R, Enblad G (2005) Evaluation of immunophenotype in diffuse large B-cell lymphoma and its impact on prognosis. Mod Pathol 18:1113–1120CrossRefGoogle Scholar
  5. Bodnar M, Luczak M, Bednarek K, Szylberg L, Marszalek A, Grenman R, Szyfter K, Jarmuz-Szymczak M, Giefing M (2016) Proteomic profiling identifies the inorganic pyrophosphatase (PPA1) protein as a potential biomarker of metastasis in laryngeal squamous cell carcinoma. Amino Acids 48:1469–1476CrossRefGoogle Scholar
  6. Cerella C, Radogna F, Dicato M, Diederich, M (2013) Natural compounds as regulators of the cancer cell metabolism. Int J Cell Biol 2013:639401Google Scholar
  7. Chen G, Gharib TG, Huang CC, Thomas DG, Shedden KA, Taylor JM, Kardia SL, Misek DE, Giordano TJ, Iannettoni MD et al (2002) Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumors. Clin Cancer Res 8:2298–2305Google Scholar
  8. Coiffier B (2005) Current strategies for the treatment of diffuse large B cell lymphoma. Curr Opin Hematol 12:259–265CrossRefGoogle Scholar
  9. Curbo S, Lagier-Tourenne C, Carrozzo R, Palenzuela L, Lucioli S, Hirano M, Santorelli F, Arenas J, Karlsson A, Johansson M (2006) Human mitochondrial pyrophosphatase: cDNA cloning and analysis of the gene in patients with mtDNA depletion syndromes. Genomics 87:410–416CrossRefGoogle Scholar
  10. De Paepe P, De Wolf-Peeters C (2007) Diffuse large B-cell lymphoma: a heterogeneous group of non-Hodgkin lymphomas comprising several distinct clinicopathological entities. Leukemia 21:37–43CrossRefGoogle Scholar
  11. Fairchild TA, Patejunas G (1999) Cloning and expression profile of human inorganic pyrophosphatase. Biochim Biophys Acta 1447:133–136CrossRefGoogle Scholar
  12. Garnis C, Buys TP, Lam WL (2004) Genetic alteration and gene expression modulation during cancer progression. Mol Cancer 3:9CrossRefGoogle Scholar
  13. Giri K, Shameer K, Zimmermann MT, Saha S, Chakraborty PK, Sharma A, Arvizo RR, Madden BJ, Mccormick DJ, Kocher JP, Bhattacharya R, Mukherjee P (2014) Understanding protein-nanoparticle interaction: a new gateway to disease therapeutics. Bioconjugate Chem 25:1078–1090CrossRefGoogle Scholar
  14. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, Müller-Hermelink HK, Campo E, Braziel RM, Jaffe ES, Pan Z, Farinha P, Smith LM, Falini B, Banham AH, Rosenwald A, Staudt LM, Connors JM, Armitage JO, Chan WC (2004) Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103:275–282CrossRefGoogle Scholar
  15. Harris NL, Jaffe ES, Stein H, Banks PM, Chan JK, Cleary ML, Delsol G, De Wolf-Peeters C, Falini B, Gatter KC et al (1994) A revised European-American classification of lymphoid neoplasms: a proposal from the international lymphoma study group. Blood 84:1361–1392Google Scholar
  16. Jeong SH, Ko GH,  Cho YH, Lee YJ, Cho BI, Ha WS, Choi SK, Kim JW, Lee CW, Heo YS et al (2012) Pyrophosphatase overexpression is associated with cell migration, invasion, and poor prognosis in gastric cancer. Tumour Biol 33:1889–1898CrossRefGoogle Scholar
  17. Li H, Xiao N, Li Z, Wang Q (2017) Expression of inorganic pyrophosphatase (PPA1) correlates with poor prognosis of epithelial ovarian cancer. Tohoku J Exp Med 241:165–173CrossRefGoogle Scholar
  18. Luo D, Wang G, Shen W, Zhao S, Zhou W, Wan L, Yuan L, Yang S, Xiang R (2016) Clinical significance and functional validation of PPA1 in various tumors. Cancer Med 5:2800–2812CrossRefGoogle Scholar
  19. Micallef IN, Remstein ED, Ansell SM, Colgan JP, Inwards DJ, Johnston PB, Lewis JT, Markovic SN, Porrata LF, White WL, Witzig TE, Ristow K, Habermann TM (2006) The international prognostic index predicts outcome after histological transformation of low-grade non-Hodgkin lymphoma. Leuk Lymphoma 47:1794–1799CrossRefGoogle Scholar
  20. Mishra DR, Chaudhary S,  Krishna BM, Mishra SK (2015) Identification of critical elements for regulation of inorganic pyrophosphatase (PPA1) in MCF7 breast cancer cells. PLoS ONE 10:e0124864CrossRefGoogle Scholar
  21. Perry AM, Alvarado-Bernal Y, Laurini JA, Smith LM, Slack GW, Tan KL, Sehn LH, Fu K, Aoun P, Greiner TC et al (2014) MYC and BCL2 protein expression predicts survival in patients with diffuse large B-cell lymphoma treated with rituximab. Br J Haematol 165:382–391CrossRefGoogle Scholar
  22. Polewski MD, Johnson KA, Foster M, Millan JL, Terkeltaub R (2010) Inorganic pyrophosphatase induces type I collagen in osteoblasts. Bone 46:81–90CrossRefGoogle Scholar
  23. Sehn LH, Gascoyne RD (2015) Diffuse large B-cell lymphoma: optimizing outcome in the context of clinical and biologic heterogeneity. Blood 125:22–32CrossRefGoogle Scholar
  24. Sehn LH, Donaldson J, Chhanabhai M, Fitzgerald C, Gill K, Klasa R, MacPherson N, O'Reilly S, Spinelli JJ, Sutherland J et al (2005) Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. J Clin Oncol 23:5027–5033CrossRefGoogle Scholar
  25. Smith A, Roman E, Howell D, Jones R, Patmore R, Jack A, Haematological Malignancy Research Network (2010) The haematological malignancy research network (HMRN): a new information strategy for population based epidemiology and health service research. Br J Haematol 148:739–753CrossRefGoogle Scholar
  26. Tay K, Tai D, Tao M, Quek R,  Ha T-C, Lim S-T (2011) Relevance of the international prognostic index in the rituximab era. J Clin Oncol 29:e14CrossRefGoogle Scholar
  27. Tezuka Y, Okada M, Tada Y, Yamauchi J, Nishigori H, Sanbe A (2013) Regulation of neurite growth by inorganic pyrophosphatase 1 via JNK dephosphorylation. PLoS One 8:e61649CrossRefGoogle Scholar
  28. Tomonaga T, Matsushita K, Yamaguchi S, Oh-Ishi M, Kodera Y, Maeda T, Shimada H, Ochiai T, Nomura F (2004) Identification of altered protein expression and post-translational modifications in primary colorectal cancer by using agarose two-dimensional gel electrophoresis. Clin Cancer Res 10:2007–2014CrossRefGoogle Scholar
  29. Wang P, Zhou Y,Mei Q, Zhao J, Huang L, Fu Q (2017) PPA1 regulates tumor malignant potential and clinical outcome of colon adenocarcinoma through JNK pathways. Oncotarget 8(35):58611–58624Google Scholar
  30. Yang Y, Cai J, Yin J, Wang D, Bai Z, Zhang J, Wang K, Yu G, Zhang Z (2015) Inorganic pyrophosphatase (PPA1) is a negative prognostic marker for human gastric cancer. Int J Clin Exp Pathol 8:12482–12490Google Scholar
  31. Yi YJ, Sutovsky M, Kennedy C, Sutovsky P (2012) Identification of the inorganic pyrophosphate metabolizing, ATP substituting pathway in mammalian spermatozoa. PLoS One 7:e34524CrossRefGoogle Scholar
  32. Zhang Y, Shen L, Stupack DG, Bai N, Xun J, Ren G, Han J, Li L, Luo Y, Xiang R, Tan X (2016) JMJD3 promotes survival of diffuse large B-cell lymphoma subtypes via distinct mechanisms. Oncotarget 7:29387–29399Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  2. 2.The First People’s Hospital of ZunyiZunyiChina
  3. 3.Inner Mongolia People’s HospitalHohhotChina

Personalised recommendations