Skip to main content
Log in

Applications of a metabolic network model of mesenchymal stem cells for controlling cell proliferation and differentiation

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) can be isolated from several tissues of adults. In addition, MSCs have the potential of differentiation into several cell types. Therefore, MSCs are very useful in stem cell therapy and regenerative medicine. MSCs have also been used as gene or protein carriers. As a result, maintaining MSCs in a desirable metabolic state has been the subject of several studies. Here, we used a genome scale metabolic network model of bone marrow derived MSCs for exploring the metabolism of these cells. We analyzed metabolic fluxes of the model in order to find ways of increasing stem cell proliferation and differentiation. Consequently, the experimental results were in consistency with computational results. Therefore, analyzing metabolic models was proven to be a promising field in biomedical researches of stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altamirano C, Paredes C, Illanes A, Cairo J, Godia F (2004) Strategies for fed-batch cultivation of t-PA producing CHO cells: substitution of glucose and glutamine and rational design of culture medium. J Biotechnol 110:171–179

    Article  CAS  Google Scholar 

  • Antoniewicz MR (2015) Methods and advances in metabolic flux analysis: a mini-review. J Ind Microbiol Biotechnol 42:317–325

    Article  CAS  Google Scholar 

  • Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox. Nat Protoc 2:727–738

    Article  CAS  Google Scholar 

  • Burgard AP, Nikolaev EV, Schilling CH, Maranas CD (2004) Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res 14:301–312

    Article  CAS  Google Scholar 

  • Bürgermeister M, Birner-Grünberger R, Nebauer R, Daum G (2004) Contribution of different pathways to the supply of phosphatidylethanolamine and phosphatidylcholine to mitochondrial membranes of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1686:161–168

    Article  Google Scholar 

  • Castro PM, Hayter PM, Ison AP, Bull AT (1992) Application of a statistical design to the optimization of culture medium for recombinant interferon-gamma production by Chinese hamster ovary cells. Appl Microbiol Biotechnol 38:84–90

    Article  CAS  Google Scholar 

  • Chang RL, Xie L, Xie L, Bourne PE, Palsson BØ (2010) Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Comput Biol 6:e1000938

    Article  Google Scholar 

  • Fell DA, Small JR (1986) Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem J 238:781–786

    Article  CAS  Google Scholar 

  • Fouladiha H, Marashi S-A (2017) Biomedical applications of cell-and tissue-specific metabolic network models. J Biomed Inform 68:35–49

    Article  Google Scholar 

  • Fouladiha H, Marashi SA, Shokrgozar MA (2015) Reconstruction and validation of a constraint-based metabolic network model for bone marrow-derived mesenchymal stem cells. Cell Prolif 48:475–485

    Article  CAS  Google Scholar 

  • Goldbeter A, Lefever R (1972) Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys J 12:1302–1315

    Article  CAS  Google Scholar 

  • Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T (2006) Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol 207:331–339

    Article  CAS  Google Scholar 

  • Gutierrez JM, Lewis NE (2015) Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling. Biotechnol J 10:939–949

    Article  CAS  Google Scholar 

  • Hadi M, Marashi SA (2014) Reconstruction of a generic metabolic network model of cancer cells. Mol BioSyst 10:3014–3021

    Article  CAS  Google Scholar 

  • Higgins J (1964) A chemical mechanism for oscillation of glycolytic intermediates in yeast cells. Proc Natl Acad Sci USA 51:989–994

    Article  CAS  Google Scholar 

  • Jerby L, Ruppin E (2012) Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling. Clin Cancer Res 18:5572–5584

    Article  CAS  Google Scholar 

  • Karr JR et al (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150:389–401

    Article  CAS  Google Scholar 

  • King ZA, Lloyd CJ, Feist AM, Palsson BO (2015) Next-generation genome-scale models for metabolic engineering. Curr Opin Biotechnol 35:23–29

    Article  CAS  Google Scholar 

  • Nishijima M, Kuge O, Akamatsu Y (1986) Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. I. Inhibition of de novo phosphatidylserine biosynthesis by exogenous phosphatidylserine and its efficient incorporation. J Biol Chem 261:5784–5789

    CAS  Google Scholar 

  • O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161:971–987

    Article  Google Scholar 

  • Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  CAS  Google Scholar 

  • Pattappa G, Heywood HK, de Bruijn JD, Lee DA (2011) The metabolism of human mesenchymal stem cells during proliferation and differentiation. J Cell Physiol 226:2562–2570

    Article  CAS  Google Scholar 

  • Pattappa G, Thorpe SD, Jegard NC, Heywood HK, de Bruijn JD, Lee DA (2013) Continuous and uninterrupted oxygen tension influences the colony formation and oxidative metabolism of human mesenchymal stem cells. Tissue Eng Part C 19:68–79

    Article  CAS  Google Scholar 

  • Poolman MG, Venkatesh KV, Pidcock MK, Fell DA (2004) A method for the determination of flux in elementary modes, and its application to Lactobacillus rhamnosus. Biotechnol Bioeng 88:601–612

    Article  CAS  Google Scholar 

  • Read EK, Bradley SA, Smitka TA, Agarabi CD, Lute SC, Brorson KA (2013) Fermentanomics informed amino acid supplementation of an antibody producing mammalian cell culture. Biotechnol Prog 29:745–753

    Article  CAS  Google Scholar 

  • Sá JV, Kleiderman S, Brito C, Sonnewald U, Leist M, Teixeira AP, Alves PM (2017) Quantification of metabolic rearrangements during neural stem cells differentiation into astrocytes by metabolic flux analysis. Neurochem Res 42:244–253

    Article  Google Scholar 

  • Saha R, Chowdhury A, Maranas CD (2014) Recent advances in the reconstruction of metabolic models and integration of omics data. Curr Opin Biotechnol 29:39–45

    Article  CAS  Google Scholar 

  • Sart S, Agathos SN, Li Y (2014) Process engineering of stem cell metabolism for large scale expansion and differentiation in bioreactors. Biochem Eng J 84:74–82

    Article  CAS  Google Scholar 

  • Shields DJ, Lehner R, Agellon LB, Vance DE (2003) Membrane topography of human phosphatidylethanolamine N-methyltransferase. J Biol Chem 278:2956–2962

    Article  CAS  Google Scholar 

  • Shlomi T, Cabili MN, Ruppin E (2009) Predicting metabolic biomarkers of human inborn errors of metabolism. Mol Syst Biol 5:263

    Article  Google Scholar 

  • Simeonidis E, Price ND (2015) Genome-scale modeling for metabolic engineering. J Ind Microbiol Biotechnol 42:327–338

    Article  CAS  Google Scholar 

  • Thiele I, Price ND, Vo TD, Palsson BØ (2005) Candidate metabolic network states in human mitochondria: impact of diabetes, ischemia, and diet. J Biol Chem 280:11683–11695

    Article  CAS  Google Scholar 

  • Varma A, Palsson BØ (1993) Metabolic capabilities of Escherichia coli II. Optimal growth patterns. J Theor Biol 165:503–522

    Article  CAS  Google Scholar 

  • Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, Marmo R, Calcagnile VM, Palmieri L, Ricquier D, Paradies E, Scarcia P, Palmieri F, Bouillaud F, Fiermonte G (2014) UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci USA 111:960–965

    Article  CAS  Google Scholar 

  • Wanet A, Arnould T, Najimi M, Renard P (2015) Connecting mitochondria, metabolism, and stem cell fate. Stem Cells Dev 24:1957–1971

    Article  CAS  Google Scholar 

  • Wiback SJ, Palsson BØ (2002) Extreme pathway analysis of human red blood cell metabolism. Biophys J 83:808–818

    Article  CAS  Google Scholar 

  • Yang H, Roth CM, Ierapetritou MG (2009) A rational design approach for amino acid supplementation in hepatocyte culture. Biotechnol Bioeng 103:1176–1191

    Article  CAS  Google Scholar 

  • Yazdani SO, Hafizi M, Zali AR, Atashi A, Ashrafi F, Seddighi AS, Soleimani M (2013) Safety and possible outcome assessment of autologous Schwann cell and bone marrow mesenchymal stromal cell co-transplantation for treatment of patients with chronic spinal cord injury. Cytotherapy 15:782–791

    Article  Google Scholar 

  • Yizhak K, Gabay O, Cohen H, Ruppin E (2013) Model-based identification of drug targets that revert disrupted metabolism and its application to ageing. Nat Commun 4:2632

    Article  Google Scholar 

  • Zhao F, Pathi P, Grayson W, Xing Q, Locke BR, Ma T (2005) Effects of oxygen transport on 3-D human mesenchymal stem cell metabolic activity in perfusion and static cultures: experiments and mathematical model. Biotechnol Prog 21:1269–1280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support of University of Tehran for this research under grant number 28791/1/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed-Amir Marashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouladiha, H., Marashi, SA., Shokrgozar, M.A. et al. Applications of a metabolic network model of mesenchymal stem cells for controlling cell proliferation and differentiation. Cytotechnology 70, 331–338 (2018). https://doi.org/10.1007/s10616-017-0148-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-017-0148-6

Keywords

Navigation