Skip to main content
Log in

Interaction of allogeneic adipose tissue-derived stromal cells and unstimulated immune cells in vitro: the impact of cell-to-cell contact and hypoxia in the local milieu

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Multipotent mesenchymal stem cells (MSCs) are an attractive tool for cell therapy and regenerative medicine. Being applied in vivo, allogeneic MSCs are faced with both activated and unstimulated immune cells. The effects of MSCs on activated immune cells are well described and are mainly suppressive. Less is known about the interaction of MSCs with unstimulated immune cells. We evaluated the contribution of tissue-related O2 level (“physiological” hypoxia—5% O2) and cell-to-cell contact to the interaction between allogeneic adipose tissue-derived MSCs (ASCs) and unstimulated peripheral blood mononuclear cells (PBMCs). Under both O2 levels, ASCs affected the immune response by elevating the proportion of CD69+ T cells and modifying the functional activity of unstimulated PBMCs, providing a significant reduction of ROS level and activation of lysosome compartment. “Physiological” hypoxia partially attenuated the ASC modulation of PBMC function, reducing CD69+ cell activation and more significantly supressing ROS. In direct co-culture, the ASC effects were more pronounced. PBMC viability was preferentially maintained, and the lymphocyte subset ratio was altered in favour of B cells. Our findings demonstrate that allogeneic ASCs do not enhance the activation of unstimulated immune cells and can provide supportive functions. The “hypoxic” phenotype of ASCs may be more “desirable” for the interaction with allogeneic immune cells that may be required in cell therapy protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MSCs:

Multipotent mesenchymal stem cells

ASCs:

Adipose stromal cells

PBMCs:

Peripheral blood mononuclear cells

MLR:

Mixed lymphocyte reaction

CFSE:

5,6-carboxyfluorescein diacetate succinimidyl ester

References

  • Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32:252–260. doi:10.1038/nbt.2816

    Article  CAS  Google Scholar 

  • Benvenuto F, Ferrari S, Gerdoni E, Gualandi F, Frassoni F, Pistoia V, Mancardi G, Uccelli A (2007) Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells 25:1753–1760. doi:10.1634/stemcells.2007-0068

    Article  CAS  Google Scholar 

  • Bobyleva PI, Andreeva ER, Gornostaeva AN, Buravkova LB (2016) Tissue-related hypoxia attenuates proinflammatory effects of allogeneic pbMCS on adipose-derived stromal cells in vitro. Stem Cells Int 2016:4726267. doi: 10.1155/2016/4726267 https://www.ncbi.nlm.nih.gov/pubmed/26880965

  • Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15:641–648. doi:10.1016/j.jcyt.2013.02.006

    Article  Google Scholar 

  • Buravkova LB, Grinakovskaia OS, Andreeva EP, Zhambalova AP, Kozionova MP (2009) Characteristics of human lipoaspirate-isolated mesenchymal stromal cells cultivated under a lower oxygen tension. Cell Tiss Biol 3:23. doi:10.1134/S1990519X09010039

    Article  Google Scholar 

  • Buravkova LB, Rylova YV, Andreeva ER, Kulikov AV, Pogodina MV, Zhivotovsky B, Gogvadze V (2013) Low ATP level is sufficient to maintain the uncommitted state of multipotent mesenchymal stem cells. Biochim Biophys Acta 1830:4418–4425. doi:10.1016/j.bbagen.2013.05.029

    Article  CAS  Google Scholar 

  • Caldwell CC, Kojima H, Lukashev D, Armstrong J, Farber M, Apasov SG, Sitkovsky MV (2001) Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J Immunol 167:6140–6149. doi:10.4049/jimmunol.167.11.6140

    Article  CAS  Google Scholar 

  • Caplan AI, Sorrell JM (2015) The MSC curtain that stops the immune system. Immunol Lett 168:136–139. doi:10.1016/j.imlet.2015.06.005

    Article  CAS  Google Scholar 

  • Cappellesso-Fleury S, Puissant-Lubrano B, Apoil PA, Titeux M, Winterton P, Casteilla L, Bourin P, Blancher A (2010) Human fibroblasts share immunosuppressive properties with bone marrow mesenchymal stem cells. J Clin Immunol 30:607–619. doi:10.1007/s10875-010-9415-4

    Article  Google Scholar 

  • Chan JL, Tang KC, Patel AP, Bonilla LM, Pierobon N, Ponzio NM, Rameshwar P (2006) Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-γ. Blood 107:4817–4824. doi:10.1182/blood-2006-01-0057

    Article  CAS  Google Scholar 

  • Chung YM, Kim JS, Yoo YD (2006) A novel protein, Romo1, induces ROS production in the mitochondria. Biochem Biophys Res Commun 347:649–655. doi:10.1016/j.bbrc.2006.06.140

    Article  CAS  Google Scholar 

  • Cipolleschi MG, Dello Sbarba P, Olivotto M (1993) The role of hypoxia in the maintenance of haematopoietic stem cells. Blood 82:2031–2037

    CAS  Google Scholar 

  • Conforti L, Petrovic M, Mohammad D, Lee S, Ma Q, Barone S, Filipovich AH (2003) Hypoxia regulates expression and activity of Kv1.3 channels in T lymphocytes: a possible role in T cell proliferation. J Immunol 170:695–702. doi:10.4049/jimmunol.170.2.695

    Article  CAS  Google Scholar 

  • Consentius C, Reinke P, Volk HD (2015) Immunogenicity of allogeneic mesenchymal stromal cells: what has been seen in vitro and in vivo? Regen Med 10:305–315. doi:10.2217/rme.15.14

    Article  CAS  Google Scholar 

  • Crop M, Baan CC, Korevaar SS, Ijzermans JN, Weimar W, Hoogduijn MJ (2010) Human adipose tissue-derived mesenchymal stem cells induce explosive T-cell proliferation. Stem Cells Dev 19:1843–1853. doi:10.1089/scd.2009.0368

    Article  CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Dj Prockop, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  Google Scholar 

  • Fehrer C, Brunauer R, Laschober G, Unterluggauer H, Reitinger S, Kloss F, Gülly C, Gassner R, Lepperdinger G (2007) Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell 6:745–757. doi:10.1111/j.1474-9726.2007.00336.x

    Article  CAS  Google Scholar 

  • Gonzalo-Daganzo R, Regidor C, Martín-Donaire T, Rico MA, Bautista G, Krsnik I, Forés R, Ojeda E, Sanjuán I, García-Marco JA, Navarro B, Gil S, Sánchez R, Panadero N, Gutiérrez Y, García-Berciano M, Pérez N, Millán I, Cabrera R, Fernández MN (2009) Results of a pilot study on the use of third-party donor mesenchymal stromal cells in cord blood transplantation in adults. Cytotherapy 11:278–288. doi:10.1080/14653240902807018

    Article  CAS  Google Scholar 

  • Gornostaeva AN, Andreeva ER, Buravkova LB (2013) Human MMSC immunosuppressive activity at low oxygen tension: direct cell-to-cell contacts and paracrine regulation. Hum Physiol 39:136. doi:10.1134/S0362119713020059

    Article  CAS  Google Scholar 

  • Gornostaeva AN, Andreeva ER, Buravkova LB (2016) Factors governing the immunosuppressive effects of multipotent mesenchymal stromal cells in vitro. Cytotechnology 68:565–577. doi:10.1007/s10616-015-9906-5

    Article  CAS  Google Scholar 

  • Grayson WL, Zhao F, Bunnell B, Ma T (2007) Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 358(3):948–953. doi:10.1016/j.bbrc.2007.05.054

    Article  CAS  Google Scholar 

  • Kaplan JM, Youd ME, Lodie TA (2011) Immunomodulatory activity of mesenchymal stem cells. Curr Stem Cell Res Ther 6:297–316. doi:10.2174/157488811797904353

    Article  CAS  Google Scholar 

  • Kassem M, Kristiansen M, Abdallah BM (2004) Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol 95:209–214. doi:10.1111/j.1742-7843.2004.pto950502.x

    Article  CAS  Google Scholar 

  • Krieger JA, Landsiedel JC, Lawrence DA (1996) Differential in vitro effects of physiological and atmospheric oxygen tension on normal human peripheral blood mononuclear cell proliferation, cytokine and immunoglobulin production. Int J Immunopharmacol 18:545–552. doi:10.1016/S0192-0561(96)00057-4

    Article  CAS  Google Scholar 

  • Kronsteiner B, Wolbank S, Peterbauer A, Hackl C, Redl H, van Griensven M, Gabriel C (2011) Human mesenchymal stem cells from adipose tissue and amnion influence T-cells depending on stimulation method and presence of other immune cells. Stem Cells Dev 20:2115–2126. doi:10.1089/scd.2011.0031

    Article  CAS  Google Scholar 

  • Le Blanc K, Rasmusson I, Götherström C, Seidel C, Sundberg B, Sundin M, Rosendahl K, Tammik C, Ringdén O (2004) Mesenchymal stem cells inhibit the expression of CD25 (Interleukin-2 Receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol 60:307–315. doi:10.1111/j.0300-9475.2004.01483.x

    Article  Google Scholar 

  • Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringdén O, Developmental Committee of the European Group for Blood and Marrow Transplantation (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586. doi:10.1016/S0140-6736(08)60690-X

    Article  Google Scholar 

  • Lee SB, Kim JJ, Kim TW, Kim BS, Lee MS, Yoo YD (2010) Serum deprivation-induced reactive oxygen species production is mediated by Romo1. Apoptosis 15:204–218. doi:10.1007/s10495-009-0411-1

    Article  CAS  Google Scholar 

  • Madrigal M, Rao KS, Riordan NH (2014) A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transpl Med 12:260. doi:10.1186/s12967-014-0260-8

    Article  Google Scholar 

  • Magin AS, Korfer NR, Partenheimer H, Lange C, Zander A, Noll T (2009) Primary cells as feeder cells for co-culture expansion of human hematopoetic stem cells from umbilical cord blood—a comparative study. Stem Cells Dev 18:173–186. doi:10.1089/scd.2007.0273

    Article  CAS  Google Scholar 

  • Malladi P, Xu Y, Chiou M, Giaccia AJ, Longaker MT (2006) Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells. Am J Physiol Cell Physiol 290:1139–1146. doi:10.1152/ajpcell.00415.2005

    Article  Google Scholar 

  • Murabayashi D, Mochizuki M, Tamaki Y, Nakahara T (2017) Practical methods for handling human periodontal ligament stem cells in serum-free and serum-containing culture conditions under hypoxia: implications for regenerative medicine. Hum Cell 30:169–180. doi:10.1007/s13577-017-0161-2

    Article  CAS  Google Scholar 

  • Najar M, Raicevic G, Fayyad-Kazan H, Bron D, Toungouz M, Lagneaux L (2016) Mesenchymal stromal cells and immunomodulation: a gathering of regulatory immune cells. Cytotherapy 18:160–171. doi:10.1016/j.jcyt.2015.10.011

    Article  CAS  Google Scholar 

  • Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110:3499–3506. doi:10.1182/blood-2007-02-069716

    Article  CAS  Google Scholar 

  • Nekanti U, Dastidar S, Venugopal P, Totey S, Ta M (2010) Increased proliferation and analysis of differential gene expression in human Wharton’s jelly-derived mesenchymal stromal cells under hypoxia. Int J Biol Sci 6:499–512. doi:10.7150/ijbs.6.499

    Article  CAS  Google Scholar 

  • Parish CR (1999) Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol Cell Biol 77:499–508. doi:10.1046/j.1440-1711.1999.00877.x

    Article  CAS  Google Scholar 

  • Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, Taureau C, Cousin B, Abbal M, Laharrague P, Penicaud L, Casteilla L, Blancher A (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129:118–129. doi:10.1111/j.1365-2141.2005.05409.x

    Article  Google Scholar 

  • Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2:141–150. doi:10.1016/j.stem.2007.11.014

    Article  CAS  Google Scholar 

  • Sade H, Sarin A (2004) Reactive oxygen species regulate quiescent T-cell apoptosis via the BH3-only proapoptotic protein BIM. Cell Death Differ 11:416–423. doi:10.1038/sj.cdd.4401347

    Article  CAS  Google Scholar 

  • Sisakhtnezhad S, Alimoradi E, Akrami H (2017) External factors influencing mesenchymal stem cell fate in vitro. Eur J Cell Biol 96:13–33. doi:10.1016/j.ejcb.2016.11.003

    Article  CAS  Google Scholar 

  • Sitkovsky M, Lukashev D (2005) Regulation of immune cells by local tissue oxygen tension: HIF1α and adenosine receptors. Nat Rev Immunol 5:712–721. doi:10.1038/nri1685

    Article  CAS  Google Scholar 

  • Sun J, Zhang Y, Yang M, Zhang Y, Xie Q, Li Z, Dong Z, Yang Y, Deng B, Feng A, Hu W, Mao H, Qu X (2010) Hypoxia induces T-cell apoptosis by inhibiting chemokine C receptor 7 expression: the role of adenosine receptor A(2). Cell Mol Immunol 7:77–82. doi:10.1038/cmi.2009.105

    Article  CAS  Google Scholar 

  • Suva D, Passweg J, Arnaudeau S, Hoffmeyer P, Kindler V (2008) In vitro activated human T lymphocytes very efficiently attach to allogenic multipotent mesenchymal stromal cells and transmigrate under them. J Cell Physiol 214:588–594. doi:10.1002/jcp.21244

    Article  CAS  Google Scholar 

  • Tremp M, Meyer Zu Schwabedissen M, Kappos EA, Engels PE, Fischmann A, Scherberich A, Schaefer DJ, Kalbermatten DF (2015) The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI. Cell Transpl 24:203–211

    Article  Google Scholar 

  • Wang LT, Ting CH, Yen ML, Liu KJ, Sytwu HK, Wu KK, Yen BL (2016) Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci 23:76. doi:10.1186/s12929-016-0289-5

    Article  Google Scholar 

  • Yang SH, Park MJ, Yoon IH, Kim SY, Hong SH, Shin JY, Nam HY, Kim YH, Kim B, Park CG (2009) Soluble mediators from mesenchymal stem cells supress T cell proliferation by inducing IL-10. Exp Mol Med 41:315–324. doi:10.3858/emm.2009.41.5.035

    Article  CAS  Google Scholar 

  • Yoo KH, Jang IK, Lee MW (2009) Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol 259:150–156. doi:10.1016/j.cellimm.2009.06.010

    Article  CAS  Google Scholar 

  • Yu J, Zhang L (2008) PUMA, a potent killer with or without p53. Oncogene Suppl 1:S71–S83. doi:10.1038/onc.2009.45

    Article  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–218. doi:10.1089/107632701300062859

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was funded by Programme of Presidium of Russian Academy of Sciences “Integrative physiology” and Grant of the President of the Russian Federation SP-3502.2015.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena R. Andreeva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gornostaeva, A.N., Andreeva, E.R., Bobyleva, P.I. et al. Interaction of allogeneic adipose tissue-derived stromal cells and unstimulated immune cells in vitro: the impact of cell-to-cell contact and hypoxia in the local milieu. Cytotechnology 70, 299–312 (2018). https://doi.org/10.1007/s10616-017-0144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-017-0144-x

Keywords

Navigation