, Volume 70, Issue 2, pp 593–601 | Cite as

Mangiferin inhibits cell migration and invasion through Rac1/WAVE2 signalling in breast cancer

  • Qing DengEmail author
  • Yan-Xiao Tian
  • JianJun Liang
Original Article


Breast tumour progression results from the advancement of the disease to a metastatic phenotype. Rac1 and Cdc42 belong to the Rho family of genes that, together with their downstream effectors, Wiskott–Aldrich Syndrome protein-family verprolin-homologous protein 2 (WAVE2) and Arp2/3, assume a vital part in cytoskeletal rearrangement and the arrangement of film projections that advance malignant cell relocation and invasion. Mangiferin is a characteristic polyphenolic compound from Mangifera indica L. (Anacardiaceae), ordinarily referred to as mango, that is consumed worldwide as a natural product, including culinary and seasoning applications. Mangiferin delays breast malignancy development and progression by inhibiting different signalling pathways required in mitogenic signalling and metastatic progression. Studies were performed to analyse the impact of mangiferin on Rac1/WAVE2 flagging, relocation and invasion in highly metastatic human MDA-MB-231 mammary cells. Additional studies led to the observation that comparative treatment with mangiferin caused marked reduction in tumour cell movement and invasion. Taken together, these discoveries demonstrate that mangiferin treatment adequately hinders Rac1/WAVE2 flagging and diminishes metastatic phenotypic expression in malignant mammary cells, indicating that mangiferin may provide a benefit as a novel restorative approach in the treatment of metastatic breast cancer.


Migration Invasion Mangiferin Rac1 Wiskott–Aldrich Syndrome protein-family verprolin-homologous protein 2 (WAVE2) 


  1. Ayoub NM, Bachawal SV, Sylvester PW (2011) Gamma-Tocotrienol inhibits HGF-dependent mitogenesis and Met activation in highly malignant mammary tumour cells. Cell Prolif 44:516–526CrossRefGoogle Scholar
  2. Cheng P, Peng ZG, Yang J, Song SJ (2007) The effect of mangiferin on telomerase activity and apoptosis in leukemic K562 cells. Zhong Yao Cai 30:306–309Google Scholar
  3. Dar A, Faizi S, Naqvi S, Roome T, Zikr-ur-Rehman S, Ali M et al (2005) Analgesic and antioxidant activity of mangiferin and its derivatives: the structure activity relationship. Biol Pharm Bull 28:596–600CrossRefGoogle Scholar
  4. Desai K, Nair MG, Prabhu JS, Vinod A, Korlimarla A, Rajarajan S et al (2016) High expression of integrin beta6 in association with the Rho-Rac pathway identifies a poor prognostic subgroup within HER2 amplified breast cancers. Cancer Med 5:2000–2011CrossRefGoogle Scholar
  5. Dou W, Zhang J, Ren G, Ding L, Sun A, Deng C et al (2014) Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-kappaB and MAPK signaling inactivation. Int Immunopharmacol 23:170–178CrossRefGoogle Scholar
  6. Duang XY, Wang Q, Zhou XD, Huang DM (2011) Mangiferin: a possible strategy for periodontal disease to therapy. Med Hypotheses 76:486–488CrossRefGoogle Scholar
  7. Dubey AK, Gupta U, Jain S (2015) Breast cancer statistics and prediction methodology: a systematic review and analysis. Asian Pac J Cancer Prev APJCP 16:4237–4245CrossRefGoogle Scholar
  8. Escudero-Esparza A, Jiang WG, Martin TA (2012) Claudin-5 is involved in breast cancer cell motility through the N-WASP and ROCK signalling pathways. J Exp Clin Cancer Res CR 31:43CrossRefGoogle Scholar
  9. Foerster F, Braig S, Moser C, Kubisch R, Busse J, Wagner E et al (2014) Targeting the actin cytoskeleton: selective antitumor action via trapping PKCvarepsilon. Cell Death Dis 5:e1398CrossRefGoogle Scholar
  10. Garcia-Rivera D, Delgado R, Bougarne N, Haegeman G, Berghe WV (2011) Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells. Cancer Lett 305:21–31CrossRefGoogle Scholar
  11. Guha S, Ghosal S, Chattopadhyay U (1996) Antitumor, immunomodulatory and anti-HIV effect of mangiferin, a naturally occurring glucosylxanthone. Chemotherapy 42:443–451CrossRefGoogle Scholar
  12. Higgs HN, Pollard TD (1999) Regulation of actin polymerization by Arp2/3 complex and WASp/Scar proteins. J Biol Chem 274:32531–32534CrossRefGoogle Scholar
  13. Ishihara D, Dovas A, Hernandez L, Pozzuto M, Wyckoff J, Segall JE et al (2013) Wiskott-Aldrich syndrome protein regulates leukocyte-dependent breast cancer metastasis. Cell Rep 4:429–436CrossRefGoogle Scholar
  14. Iwaya K, Norio K, Mukai K (2007) Coexpression of Arp2 and WAVE2 predicts poor outcome in invasive breast carcinoma. Mod Pathol 20:339–343CrossRefGoogle Scholar
  15. Jang JH, Lee KH, Jung HK, Sim MO, Kim TM, Woo KW et al (2016) Anti-inflammatory effects of 6′-O-acetyl mangiferin from Iris rossii Baker via NF-kappab signal blocking in lipopolysaccharide-stimulated RAW 264.7 cells. Chem Biol Interact 257:54–60CrossRefGoogle Scholar
  16. Jeong JJ, Jang SE, Hyam SR, Han MJ, Kim DH (2014) Mangiferin ameliorates colitis by inhibiting IRAK1 phosphorylation in NF-kappaB and MAPK pathways. Eur J Pharmacol 740:652–661CrossRefGoogle Scholar
  17. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Investig 119:1420–1428CrossRefGoogle Scholar
  18. Ko HS, Kim JS, Cho SM, Lee HJ, Ahn KS, Kim SH et al (2014) Urokinase-type plasminogen activator expression and Rac1/WAVE-2/Arp2/3 pathway are blocked by pterostilbene to suppress cell migration and invasion in MDA-MB-231 cells. Bioorg Med Chem Lett 24:1176–1179CrossRefGoogle Scholar
  19. Kurisu S, Takenawa T (2010) WASP and WAVE family proteins: friends or foes in cancer invasion? Cancer Sci 101:2093–2104CrossRefGoogle Scholar
  20. Lucato CM, Halls ML, Ooms LM, Liu HJ, Mitchell CA, Whisstock JC et al (2015) The phosphatidylinositol (3,4,5)-trisphosphate-dependent Rac exchanger 1.Ras-related C3 botulinum toxin substrate 1 (P-Rex1.Rac1) complex reveals the basis of Rac1 activation in breast cancer cells. J Biol Chem 290:20827–20840CrossRefGoogle Scholar
  21. Noratto GD, Bertoldi MC, Krenek K, Talcott ST, Stringheta PC, Mertens-Talcott SU (2010) Anticarcinogenic effects of polyphenolics from mango (Mangifera indica) varieties. J Agric Food Chem 58:4104–4112CrossRefGoogle Scholar
  22. Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL (2005) Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307:1603–1609CrossRefGoogle Scholar
  23. Percival SS, Talcott ST, Chin ST, Mallak AC, Lounds-Singleton A, Pettit-Moore J (2006) Neoplastic transformation of BALB/3T3 cells and cell cycle of HL-60 cells are inhibited by mango (Mangifera indica L.) juice and mango juice extracts. J Nutr 136:1300–1304CrossRefGoogle Scholar
  24. Rajendran P, Jayakumar T, Nishigaki I, Ekambaram G, Nishigaki Y, Vetriselvi J et al (2013) Immunomodulatory effect of mangiferin in experimental animals with benzo(a)pyrene-induced lung carcinogenesis. Int J Biomed Sci IJBS 9:68–74Google Scholar
  25. Rajendran P, Rengarajan T, Nandakumar N, Divya H, Nishigaki I (2015) Mangiferin in cancer chemoprevention and treatment: pharmacokinetics and molecular targets. J Receptor Signal Transduct Res 35:76–84CrossRefGoogle Scholar
  26. Saenz-Narciso B, Gomez-Orte E, Zheleva A, Gastaca I, Cabello J (2016) Control of developmental networks by Rac/Rho small GTPases: how cytoskeletal changes during embryogenesis are orchestrated. BioEssays News Rev Mol Cell Dev Biol 38:1246–1254CrossRefGoogle Scholar
  27. Suchal K, Malik S, Gamad N, Malhotra RK, Goyal SN, Ojha S et al (2016) Mangiferin protect myocardial insults through modulation of MAPK/TGF-beta pathways. Eur J Pharmacol 776:34–43CrossRefGoogle Scholar
  28. Symons M, Segall JE (2009) Rac and Rho driving tumor invasion: who’s at the wheel? Genome Biol 10:213CrossRefGoogle Scholar
  29. Takenawa T, Miki H (2001) WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J Cell Sci 114:1801–1809Google Scholar
  30. Upadhyaya A, van Oudenaarden A (2004) Actin polymerization: forcing flat faces forward. Curr Biol CB 14:R467–R469CrossRefGoogle Scholar
  31. Wilhelm I, Fazakas C, Molnar J, Hasko J, Vegh AG, Cervenak L et al (2014) Role of Rho/ROCK signaling in the interaction of melanoma cells with the blood-brain barrier. Pigment Cell Melanoma Res 27:113–123CrossRefGoogle Scholar
  32. Wilkinson AS, Taing MW, Pierson JT, Lin CN, Dietzgen RG, Shaw PN et al (2015) Estrogen modulation properties of mangiferin and quercetin and the mangiferin metabolite norathyriol. Food Funct 6:1847–1854CrossRefGoogle Scholar
  33. Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochem Biophys Acta 1773:642–652CrossRefGoogle Scholar
  34. Yokotsuka M, Iwaya K, Saito T, Pandiella A, Tsuboi R, Kohno N et al (2011) Overexpression of HER2 signaling to WAVE2-Arp2/3 complex activates MMP-independent migration in breast cancer. Breast Cancer Res Treat 126:311–318CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2018

Authors and Affiliations

  1. 1.Department of PathologyThe First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and TechnologyLuoyangChina
  2. 2.Department of Emergency MedicineSan Er Ling Yi HospitalHanzhong CityChina

Personalised recommendations