Skip to main content
Log in

Seleno-short-chain chitosan induces apoptosis in human non-small-cell lung cancer A549 cells through ROS-mediated mitochondrial pathway

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Seleno-short-chain chitosan (SSCC) is a synthesized chitosan derivative. In this study, antitumor activity and underlying mechanism of SSCC on human non-small-cell lung cancer A549 cells were investigated in vitro. The MTT assay showed that SSCC could inhibit cell viability in a dose- and time-dependent manner, and 200 μg/ml SSCC exhibited significantly toxic effects on A549 cells. The cell cycle assay showed that SSCC triggered S phase cell cycle arrest in a dose- and time-dependent manner, which was related to a downregulation of S phase associated cyclin A. The DAPI staining and Annexin V-FITC/PI double staining identified that the SSCC could induce A549 cells apoptosis. Further studies found that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) by DCFH-DA and Rhodamin 123 staining, respectively. Meanwhile, free radical scavengers N-acetyl-l-cysteine (NAC) pretreatment confirmed that SSCC-induced A549 cells apoptosis was associated with ROS generation. Furthermore, real-time PCR and western blot assay showed that SSCC up-regulated Bax and down-regulated Bcl-2, subsequently incited the release of cytochrome c from mitochondria to cytoplasm, activated the increase of cleaved-caspase 3 and finally induced A549 cells apoptosis in vitro. In general, the present study demonstrated that SSCC induced A549 cells apoptosis via ROS-mediated mitochondrial apoptosis pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anal AK, Stevens WF, Remunan-Lopez C (2006) Ionotropic cross-linked chitosan microspheres for controlled release of ampicillin. Int J Pharm 312:166–173. doi:10.1016/j.ijpharm.2006.01.043

    Article  CAS  Google Scholar 

  • Chan CK, Supriady H, Goh BH, Kadir HA (2015) Elephantopus scaber induces apoptosis through ROS-dependent mitochondrial signaling pathway in HCT116 human colorectal carcinoma cells. J Ethnopharmacol 168:291–304. doi:10.1016/j.jep.2015.03.072

    Article  Google Scholar 

  • Chang CC, Hung CM, Yang YR, Lee MJ, Hsu YC (2013) Sulforaphane induced cell cycle arrest in the G2/M phase via the blockade of cyclin B1/CDC2 in human ovarian cancer cells. J Ovarian Res 6:41. doi:10.1186/1757-2215-6-41

    Article  CAS  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219. doi:10.1016/S0092-8674(04)00046-7

    Article  CAS  Google Scholar 

  • Decker C, Bianchi C, Decker D, Morel F (2001) Photoinitiated polymerization of vinyl ether-based systems. Prog Org Coat 42:253–266. doi:10.1016/S0300-9440(01)00203-X

    Article  CAS  Google Scholar 

  • Deepagan VG, Kwon S, You DG, Nguyen VQ, Um W, Ko H, Lee H, Jo DG, Kang YM, Park JH (2016) In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery. Biomaterials 103:56–66. doi:10.1016/j.biomaterials.2016.06.044

    Article  CAS  Google Scholar 

  • Dong BY, Ganther HE, Stewart C (2002) Ip C: identification of molecular targets associated with selenium-induced growth inhibition in human breast cells using cDNA microarrays. Cancer Res 62:708–714

    CAS  Google Scholar 

  • Estevez H, Garcia-Lidon JC, Luque-Garcia JL, Camara C (2014) Effects of chitosan-stabilized selenium nanoparticles on cell proliferation, apoptosis and cell cycle pattern in HepG2 cells: comparison with other selenospecies. Colloid Surf B 122:184–193. doi:10.1016/j.colsurfb.2014.06.062

    Article  CAS  Google Scholar 

  • Fernandes AP, Gandin V (2015) Selenium compounds as therapeutic agents in cancer. BBA-Gen Subj 1850:1642–1660. doi:10.1016/j.bbagen.2014.10.008

    Article  CAS  Google Scholar 

  • He N, Shi X, Zhao Y, Tian L, Wang D, Yang X (2013) Inhibitory effects and molecular mechanisms of selenium-containing tea polysaccharides on human breast cancer MCF-7 cells. J Agric Food Chem 61:579–588. doi:10.1021/jf3036929

    Article  CAS  Google Scholar 

  • Hua P, Sun M, Zhang G, Zhang Y, Tian X, Li X, Zhang X (2015) Cepharanthine induces apoptosis through reactive oxygen species and mitochondrial dysfunction in human non-small-cell lung cancer cells. Biochem Biophys Res Commun 460:136–142. doi:10.1016/j.bbrc.2015.02.131

    Article  CAS  Google Scholar 

  • Jiang G, Liu J, Ren B, Tang Y, Owusu L, Li M, Zhang J, Liu L, Li W (2016) Anti-tumor effects of osthole on ovarian cancer cells in vitro. J Ethnopharmacol 193:368–376. doi:10.1016/j.jep.2016.08.045

    Article  CAS  Google Scholar 

  • Lee JS, Hong EK (2010) Hericium erinaceus enhances doxorubicin-induced apoptosis in human hepatocellular carcinoma cells. Cancer Lett 297:144–154. doi:10.1016/j.canlet.2010.05.006

    Article  CAS  Google Scholar 

  • Lee SO, Nadiminty N, Wu XX, Lou W, Dong Y, Ip C, Onate SA, Gao AC (2005) Selenium disrupts estrogen signaling by altering estrogen receptor expression and ligand binding in human breast cancer cells. Cancer Res 65:3487–3492. doi:10.1158/0008-5472.CAN-04-3267

    Article  CAS  Google Scholar 

  • Lin M, Tang S, Zhang C, Chen H, Huang W, Liu Y, Zhang J (2016) Euphorbia factor L2 induces apoptosis in A549 cells through the mitochondrial pathway. Acta Pharmaceutica Sinica B. doi:10.1016/j.apsb.2016.06.008

    Google Scholar 

  • Liu A, Song W, Cao D, Liu X, Jia Y (2008) Growth inhibition and apoptosis of human leukemia K562 cells induced by seleno-short-chain chitosan. Method find Exp Clin 30:181–186. doi:10.1358/mf.2008.30.3.1213209

    Article  CAS  Google Scholar 

  • Ma WD, Zou YP, Wang P, Yao XH, Sun Y, Duan MH, Fu YJ, Yu B (2014) Chimaphilin induces apoptosis in human breast cancer MCF-7 cells through a ROS-mediated mitochondrial pathway. Food Chem Toxicol 70:1–8. doi:10.1016/j.fct.2014.04.014

    Article  CAS  Google Scholar 

  • Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD (2008) Molecular mechanisms and clinical implications of reversible protein S-Glutathionylation. Antioxid Redox Sign 10:1941–1987. doi:10.1089/ars.2008.2089

    Article  CAS  Google Scholar 

  • Renner K, Amberger A, Konwalinka G, Kofler R, Gnaiger E (2003) Changes of mitochondrial respiration, mitochondrial content and cell size after induction of apoptosis in leukemia cells. BBA-Mol Cell Res 1642:115–123. doi:10.1016/s0167-4889(03)00105-8

    CAS  Google Scholar 

  • Rukkijakan T, Ngiwsara L, Lirdprapamongkol K, Svasti J, Phetrak N, Chuawong P (2016) A synthetic 2,3-diarylindole induces cell death via apoptosis and autophagy in A549 lung cancer cells. Bioorg Med Chem Lett 26:2119–2123. doi:10.1016/j.bmcl.2016.03.079

    Article  CAS  Google Scholar 

  • Sarada SKS, Himadri P, Ruma D, Sharma SK, Pauline T, Mrinalini (2008) Selenium protects the hypoxia induced apoptosis in neuroblastoma cells through upregulation of Bcl-2. Brain Res 1209:29–39. doi:10.1016/j.brainres.2008.02.041

    Article  CAS  Google Scholar 

  • Shu G, Yang J, Zhao W, Xu C, Hong Z, Mei Z, Yang X (2014) Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling. Toxicol Appl Pharmacol 281:157–165. doi:10.1016/j.taap.2014.06.021

    Article  CAS  Google Scholar 

  • Simon HU, Hajyehia A, Levischaffer SF (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  CAS  Google Scholar 

  • Stewart MS, Spallholz JE, Neldner KH, Pence BC (1999) Selenium compounds have disparate abilities to impose oxidative stress and induce apoptosis. Free Radic Biol Med 26:42–48. doi:10.1016/S0891-5849(98)00147-6

    Article  CAS  Google Scholar 

  • Su JY, Luo X, Zhang XJ (2015) Immunosupressive activity of pogostone on T cells: blocking proliferation via S phase arrest. Int Immunopharmacol 26:328–337. doi:10.1016/j.intimp.2015.04.019

    Article  CAS  Google Scholar 

  • Sui Y, Li S, Shi P, Wu Y, Li Y, Chen W, Huang L, Yao H, Lin X (2016) Ethyl acetate extract from Selaginella doederleinii Hieron inhibits the growth of human lung cancer cells A549 via caspase-dependent apoptosis pathway. J Ethnopharmacol 190:261–271. doi:10.1016/j.jep.2016.06.029

    Article  CAS  Google Scholar 

  • Tedeschi H (1980) The mitochondrial membrane potential. Biol Rev 55:171–206. doi:10.1111/j.1469-185X.1980.tb00692.x

    Article  CAS  Google Scholar 

  • Wang J, Li Q, Bao A, Liu X, Zeng J, Yang X, Yao J, Zhang J, Lei Z (2016) Synthesis of selenium-containing Artemisia sphaerocephala polysaccharides: solution conformation and anti-tumor activities in vitro. Carbohydr Polym 152:70–78. doi:10.1016/j.carbpol.2016.06.090

    Article  CAS  Google Scholar 

  • Wu CC, Chan ML, Chen WY, Tsai CY, Chang FR, Wu YC (2005) Pristimerin induces caspase-dependent apoptosis in MDA-MB-231 cells via direct effects on mitochondria. Mol Cancer Ther 4:1277–1285. doi:10.1158/1535-7163.MCT-05-0027

    Article  CAS  Google Scholar 

  • Yang M, Wang K, Gao L, Han YT, Lu JF, Zou TT (1992) Exploration for a natural selenium supplement-characterization and bioactivities of Se-containing polysaccharide from garlic. J Chin Pharm Sci 1:28–32

    CAS  Google Scholar 

  • Zhang CZ, Zhang H, Yun J, Chen GG, Lai PBS (2012) Dihydroartemisinin exhibits antitumor activity toward hepatocellular carcinoma in vitro and in vivo. Biochem Pharmacol 83:1278–1289. doi:10.1016/j.bcp.2012.02.002

    Article  CAS  Google Scholar 

  • Zhang CG, Huang JC, Liu T, Li XY (2015) Anticancer effects of bishydroxycoumarin are mediated through apoptosis induction, cell migration inhibition and cell cycle arrest in human glioma cells. Original Artic 20:1592–1600

    Google Scholar 

  • Zhang J, Liang Y, Lin Y, Liu Y, You Y, Yin W (2016) IRE1α-TRAF2-ASK1 pathway is involved in CSTMP-induced apoptosis and ER stress in human non-small cell lung cancer A549 cells. Biomed Pharmacother 82:281–289. doi:10.1016/j.biopha.2016.04.050

    Article  CAS  Google Scholar 

  • Zhou Y, Lu N, Zhang H, Wei L, Tao L, Dai Q, Zhao L, Lin B, Ding Q, Guo Q (2013) HQS-3, a newly synthesized flavonoid, possesses potent anti-tumor effect in vivo and in vitro. Eur J Pharm Sci 49:649–658. doi:10.1016/j.ejps.2013.04.016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhang, S., Wang, P. et al. Seleno-short-chain chitosan induces apoptosis in human non-small-cell lung cancer A549 cells through ROS-mediated mitochondrial pathway. Cytotechnology 69, 851–863 (2017). https://doi.org/10.1007/s10616-017-0098-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-017-0098-z

Keywords

Navigation