Skip to main content
Log in

Cytoprotective propensity of green tea polyphenols against citrinin-induced skeletal-myotube damage in C2C12 cells

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The mycotoxin citrinin, is produced by several species of Penicillium, Aspergillus and Monascus, and is capable of inducing cytotoxicity, oxidative stress and apoptosis. The aim of the present study was to investigate the effect of citrinin in mouse skeletal muscle cells (C2C12) and to overcome the cellular adverse effects by supplementing green tea extract (GTE) rich in polyphenols. C2C12 myoblasts were differentiated to myotubes and were exposed to citrinin in a dose dependent manner (0–100 µM) for 24 h and IC50 value was found to be 100 µM that resulted in decreased cell viability, increased LDH leakage and compromised membrane integrity. Mitochondrial membrane potential loss, increased accumulation of intracellular ROS and sub G1 phase of cell cycle was observed. To ameliorate the cytotoxic effects of CTN, C2C12 cells were pretreated with GTE (20, 40, 80 µg/ml) for 2 h followed by citrinin (100 µM) treatment for 24 h. GTE pretreatment combated citrinin-induced cytotoxicity and oxidative stress. GTE at 40 and 80 µg/ml significantly promoted cell survival and upregulated antioxidant enzyme activities (CAT, SOD, GPx) and endogenous antioxidant GSH, while the gene and protein expression levels were significantly restored through its effective antioxidant mechanism. Present study results suggested the antioxidant properties of GTE as a herbal source in ameliorating the citrinin-induced oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Anderson RF, Fisher LJ, Hara Y, Harris T, Mak WB, Melton LD, Packer JE (2001) Green tea catechins partially protect DNA from OH radical-induced strand breaks and base damage through fast chemical repair of DNA radicals. Carcinogenesis 22:1189–1193

    Article  CAS  Google Scholar 

  • Ardite E, Barbera JA, Roca J, Fernández-Checa JC (2004) Glutathione depletion impairs myogenic differentiation of murine skeletal muscle C2C12 cells through sustained NF-κB activation. Am J Pathol 165:719–728

    Article  CAS  Google Scholar 

  • Aykaç G, Uysal M, Yalçin AS, Koçak-Toker N, Sivas A, Öz H (1985) The effect of chronic ethanol ingestion on hepatic lipid peroxide, glutathione, glutathione peroxidase and glutathione transferase in rats. Toxicology 36:71–76

    Article  Google Scholar 

  • Baracca A, Sgarbi G, Solaini G, Lenaz G (2003) Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis. BBA-Bioenerg 1606:137–146

    Article  CAS  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    Article  CAS  Google Scholar 

  • Blanc PJ, Laussac JP, Le Bars J, Le Bars P, Loret MO, Pareilleux A, Prome D, PromeJC Santerre AL, Goma G (1995) Characterization of monascidin A from Monascus as citrinin. Int J Food Microbiol 27:201–213

    Article  CAS  Google Scholar 

  • Bouslimi A, Bouaziz C, Ayed-Boussema I, Hassen W, Bacha H (2008) Individual and combined effects of ochratoxin A and citrinin on viability and DNA fragmentation in cultured Vero cells and on chromosome aberrations in mice bone marrow cells. Toxicology 251:1–7

    Article  CAS  Google Scholar 

  • Braca A, De Tommasi N, Di Bari L, Pizza C, Politi M, Morelli I (2001) Antioxidant principles from bauhinia tarapotensis. J Nat Prod 64:892–895

    Article  CAS  Google Scholar 

  • Buckler KJ, Vaughan-Jones RD (1998) Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells. J Physiol 513:819–833

    Article  CAS  Google Scholar 

  • Buetler TM, Renard M, Offord EA, Schneider H, Ruegg UT (2002) Green tea extract decreases muscle necrosis in mdx mice and protects against reactive oxygen species. Am J ClinNutr 75:749–753

    CAS  Google Scholar 

  • Chagas GM, Oliveira M, Bengna M, Campello AP, Klüppel M, Lúcia W (1992) Mechanism of citrinin-induced dysfunction of mitochondria. II. Effect on respiration, enzyme activities, and membrane potential of liver mitochondria. Cell Biochem Funct 10:209–216

    Article  CAS  Google Scholar 

  • Chan W (2007) Citrinin induces apoptosis via a mitochondria-dependent pathway and inhibition of survival signals in embryonic stem cells, and causes developmental injury in blastocysts. Biochem J 404:317–326

    Article  CAS  Google Scholar 

  • Chan KM, Decker EA, Feustman C (1994) Endogenous skeletal muscle antioxidants. Crit Rev Food Sci Nutr 34:403–426

    Article  CAS  Google Scholar 

  • Chang CH, Yu FY, Wu TS, Lin YS, Liu BH (2009) Activation of ERK and JNK signaling pathways by mycotoxin citrinin in human cells. Toxicol Appl Pharmacol 237:281–287

    Article  CAS  Google Scholar 

  • Chang CH, Yu FY, Wu TS, Wang LT, Liu BH (2011) Mycotoxin citrinin induced cell cycle G2/M arrest and numerical chromosomal aberration associated with disruption of microtubule formation in human cells. Toxicol Sci 119:84–92

    Article  CAS  Google Scholar 

  • Chen CC, Chan WH (2009) Inhibition of citrinin-induced apoptotic biochemical signaling in human hepatoma G2 cells by resveratrol. Int J Mol Sci 10:3338–3357

    Article  CAS  Google Scholar 

  • Collins JA, Schandl CA, Young KK, Vesely J, Willingham MC (1997) Major DNA fragmentation is a late event in apoptosis. J Histochem Cytochem 45:923–934

    Article  CAS  Google Scholar 

  • Da Lozzo EJ, Oliveira MBM, Gunilla ES, Carnieri EGS (1998) Citrinin-induced mitochondrial permeability transition. J Biochem Mol Toxi 12:291–297

    Article  Google Scholar 

  • El-Banna AA, Pitt JI, Leistner L (1987) Production of M ycotoxins by Penicillium Species. Syst Appl Microbiol 10:42–46

    Article  CAS  Google Scholar 

  • Franco AA, Odom RS, Rando TA (1999) Regulation of antioxidant enzyme gene expression in response to oxidative stress and during differentiation of mouse skeletal muscle. Free Radical Bio Med 27:1122–1132

    Article  CAS  Google Scholar 

  • Graham HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21:334–350

    Article  CAS  Google Scholar 

  • Guo Q, Zhao B, Shen S, Hou J, Hu J, Xin W (1999) ESR study on the structure–antioxidant activity relationship of tea catechins and their epimers. Biochim Biophys Acta 1427:13–23

    Article  CAS  Google Scholar 

  • Hanelt M, Gareis M, Kollarczik B (1994) Cytotoxicity of mycotoxins evaluated by the MTT-cell culture assay. Mycopathologia 128:167–174

    Article  CAS  Google Scholar 

  • Hetherington AC, Raistrick, H (1931) On the production and chemical constitution of a new yellow colouring matter, citrinin, produced from glucose by Penicillium citrinum Thom. Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character 269–295

  • Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143

    Article  CAS  Google Scholar 

  • Huo C, Wan SB, Lam WH, Li L, Wang Z, Landis-Piwowar KR, Chen D, Dou QP, Chan TH (2008) The challenge of developing green tea polyphenols as therapeutic agents. Inflammopharmacology 16:248–252

    Article  CAS  Google Scholar 

  • Jeswal P (1996) Citrinin-induced chromosomal abnormalities in the bone marrow cells of Mus musculus. Cytobios 86:29–33

    CAS  Google Scholar 

  • Kalaiselvi P, Rajashree K, Bharathi Priya L, Padma VV (2013) Cytoprotective effect of epigallocatechin-3-gallate against deoxynivalenol-induced toxicity through anti-oxidative and anti-inflammatory mechanisms in HT-29 cells. Food Chem Toxicol 56:110–118

    Article  CAS  Google Scholar 

  • Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H (2006) Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res 66:2500–2505

    Article  CAS  Google Scholar 

  • Klarić MŠ, Želježić D, Rumora L, Peraica M, Pepeljnjak S, Domijan AM (2012) A potential role of calcium in apoptosis and aberrant chromatin forms in porcine kidney PK15 cells induced by individual and combined ochratoxin A and citrinin. Arch Toxicol 86:97–107

    Article  Google Scholar 

  • Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J (2015) The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil 36:377–393

    Article  CAS  Google Scholar 

  • Krishan A (1975) Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 66:188–193

    Article  CAS  Google Scholar 

  • Krishnaswamy R, Devaraj SN, Padma VV (2010) Lutein protects HT-29 cells against Deoxynivalenol-induced oxidative stress and apoptosis: prevention of NF-κB nuclear localization and down regulation of NF-κB and Cyclo-Oxygenase–2 expression. Free Radical Bio Med 49:50–60

    Article  CAS  Google Scholar 

  • Liu BH, Wu TS, Su MC, Chung CP, Yu FY (2005) Evaluation of citrinin occurrence and cytotoxicity in Monascus fermentation products. J Agr Food Chem 53:170–175

    Article  CAS  Google Scholar 

  • Liu BH, Chi JY, Hsiao YW, Tsai KD, Lee YJ, Lin CC, Hsu SC, Yang SM, Lin TH (2010) The fungal metabolite, citrinin, inhibits lipopolysaccharide/interferon-gamma-induced nitric oxide production in glomerular mesangial cells. Int I mmunopharmacol 10:1608–1615

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523

    CAS  Google Scholar 

  • Murphy ME, Kehrer JP (1986) Free radicals: a potential pathogenic mechanism in inherited muscular dystrophy Life Sci. 39:2271–2278

    CAS  Google Scholar 

  • Nagata S (2000) Apoptotic DNA fragmentation. Exp Cell Res 256:12–18

    Article  CAS  Google Scholar 

  • Nakachi K, Eguchi H, Imai K (2003) Can tea time increase one’s lifetime? Ageing Res Rev 2:1–10

    Article  Google Scholar 

  • Nakagawa T, Yokozawa T (2002) Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol 40:1745–1750

    Article  CAS  Google Scholar 

  • Nanjo F, Honda M, Okushio K, Matsumoto N, Ishigaki F, Ishigami T, Hara Y (1993) Effects of dietary tea catechins on alpha-tocopherol levels, lipid peroxidation, and erythrocyte deformability in rats fed on high palm oil and perilla oil diets. Biol Pharm Bull 16:1156–1159

    Article  CAS  Google Scholar 

  • Peraica M (2012) Scientific Opinion on the risks for public and animal health related to the presence of citrinin in food and feed. Eur Food Safe Auth J 10:1–82

    Google Scholar 

  • Pfeiffer E, Gross K, Metzler M (1998) Aneuploidogenic and clastogenic potential of the mycotoxins citrinin and patulin. Carcinogenesis 19:1313–1318

    Article  CAS  Google Scholar 

  • Reddy RV, Maruya K, Hayes AW, Bernd WO (1982) Embryocidal teratogenic and fetotoxic effects of citrinin in rats. Toxicology 25:151–160

    Article  CAS  Google Scholar 

  • Renzulli C, Galvano F, Pierdomenico L, Speroni E, Guerra MC (2004) Effects of rosmarinic acid against aflatoxin B1 and ochratoxin-A-induced cell damage in a human hepatoma cell line (Hep G2). J Appl Toxicol 24:289–296

    Article  CAS  Google Scholar 

  • Ribeiro SM, Chagas GM, Campello AP, Kluppel M, Lúcia W (1997) Mechanism of citrinin-induced dysfunction of mitochondria. V. Effect on the homeostasis of the reactive oxygen species. Cell Biochem Funct 15:203–209

    Article  CAS  Google Scholar 

  • Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461

    Article  CAS  Google Scholar 

  • Richard JL, Payne GE, Desjardins AE, Maragos C, Norred WP, Pestka JJ (2003) Mycotoxins: risks in plant, animal and human systems. CAST Task Force Report 139:101–103

    Google Scholar 

  • Sakanaka S, Tachibana Y, Okada Y (2005) Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food Chem 89:569–575

    Article  CAS  Google Scholar 

  • Salucci S, Battistelli M, Burattini S, Squillace C, Canonico B, Gobbi P, Papa S, Falcieri E (2010) C2C12 myoblast sensitivity to different apoptotic chemical triggers. Micron 41:966–973

    Article  CAS  Google Scholar 

  • Savić IM, Nikolić VD, Savić IM, Nikolić LB, Jović MD, Jović MD (2014) The qualitative analysis of the green tea extract using ESI-MS method. Savremene tehnologije. 3:30–37

    Article  Google Scholar 

  • Shankar S, Ganapathy S, Hingorani SR, Srivastava RK (2007) EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci 13:440–452

    Article  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult 16:144–158

    CAS  Google Scholar 

  • Sugiyama KI, Kinoshita M, Kamata Y, Minai Y, Sugita-Konishi Y (2011) (−)-Epigallocatechingallate suppresses the cytotoxicity induced by trichothecene mycotoxins in mouse cultural macrophages. Mycotoxin Res 27:281–285

    Article  CAS  Google Scholar 

  • Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  CAS  Google Scholar 

  • Velayutham P, Babu A, Liu D (2008) Green tea catechins and cardiovascular health: an update. Curr Med Chem 15:1840

    Article  Google Scholar 

  • Vrabcheva T, Usleber E, Dietrich R, Märtlbauer E (2000) Co-occurrence of ochratoxin A and citrinin in cereals from Bulgarian villages with a history of Balkan endemic nephropathy. J Agr Food Chem 48:2483–2488

    Article  CAS  Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Bio Med 27:612–616

    Article  CAS  Google Scholar 

  • Wiseman SA, Balentine DA, Frei B (1997) Antioxidants in tea. Crit Rev Food SciNutr 37:705–718

    Article  CAS  Google Scholar 

  • Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    Article  CAS  Google Scholar 

  • Yen GC, Chen HY (1995) Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agr Food Chem 43:27–32

    Article  CAS  Google Scholar 

  • Yu FY, Liao YC, Chang CH, Liu BH (2006) Citrinin induces apoptosis in HL-60 cells via activation of the mitochondrial pathway. Toxicol Lett 161:143–151

    Article  CAS  Google Scholar 

  • Zaveri NT (2006) Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci 78:2073–2080

    Article  CAS  Google Scholar 

  • Zhang JH, Ming XU (2000) DNA fragmentation in apoptosis. Cell Res 10:205–211

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, DFRL, Mysuru, for providing necessary facilities to conduct the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Anand.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharath Babu, G.R., Ilaiyaraja, N., Khanum, F. et al. Cytoprotective propensity of green tea polyphenols against citrinin-induced skeletal-myotube damage in C2C12 cells. Cytotechnology 69, 681–697 (2017). https://doi.org/10.1007/s10616-017-0077-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-017-0077-4

Keywords

Navigation