Skip to main content

Advertisement

Log in

Optimized expression of the antimicrobial protein Gloverin from Galleria mellonella using stably transformed Drosophila melanogaster S2 cells

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Antimicrobial proteins and peptides (AMPs) are valuable as leads in the pharmaceutical industry for the development of novel anti-infective drugs. Here we describe the efficient heterologous expression and basic characterization of a Gloverin-family AMP derived from the greater wax moth Galleria mellonella. Highly productive single-cell clones prepared by limiting dilution achieved a 100% increase in productivity compared to the original polyclonal Drosophila melanogaster S2 cell line. Comprehensive screening for suitable expression conditions using statistical experimental designs revealed that optimal induction was achieved using 600 µM CuSO4 at the mid-exponential growth phase. Under these conditions, 25 mg/L of the AMP was expressed at the 1-L bioreactor scale, with optimal induction and harvest times ensured by dielectric spectroscopy and the online measurement of optical density. Gloverin was purified from the supernatant by immobilized metal ion affinity chromatography followed by dialysis. In growth assays, the purified protein showed specific antimicrobial activity against two different strains of Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akhnoukh R, Kretzmer G, Schügerl K (1996) On-line monitoring and control of the cultivation of Spodoptera frugiperda Sf9 insect cells and β-galactosidase production by Autographa californica virus vector. Enzyme Microb Technol 18:220–228. doi:10.1016/0141-0229(95)00093-3

    Article  CAS  Google Scholar 

  • Altincicek B, Linder M, Linder D et al (2007) Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infect Immun 75:175–183. doi:10.1128/IAI.01385-06

    Article  CAS  Google Scholar 

  • Aoki W, Kuroda K, Ueda M (2012) Next generation of antimicrobial peptides as molecular targeted medicines. J Biosci Bioeng 114:365–370. doi:10.1016/j.jbiosc.2012.05.001

    Article  CAS  Google Scholar 

  • Axén A, Carlsson A, Engström Å, Bennich H (1997) Gloverin, an antibacterial protein from the immune hemolymph of Hyalophora pupae. Eur J Biochem 247:614–619. doi:10.1111/j.1432-1033.1997.00614.x

    Article  Google Scholar 

  • Bédard C, Jolicoeur M, Jardin B et al (1994) Insect cell density in bioreactor cultures can be estimated from on-line measurements of optical density. Biotechnol Tech 8:605–610. doi:10.1007/BF00241682

    Article  Google Scholar 

  • Bernard AR, Kost TA, Overton L, Cavegn C, Young J, Bertrand M et al (1994) Recombinant protein expression in a Drosophila cell line: comparison with the baculovirus system. Cytotechnology 15:139–144

    Article  CAS  Google Scholar 

  • Brown SE, Howard A, Kasprzak AB et al (2009) A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem Mol Biol 39:792–800. doi:10.1016/j.ibmb.2009.09.004

    Article  CAS  Google Scholar 

  • Bunch TA, Grinblat Y, Goldstein LS (1988) Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res 16:1043–1061

    Article  CAS  Google Scholar 

  • Carballar-Lejarazú R, Rodríguez MH, de la Cruz Hernández-Hernández F et al (2008) Recombinant scorpine: a multifunctional antimicrobial peptide with activity against different pathogens. Cell Mol Life Sci 65:3081–3092. doi:10.1007/s00018-008-8250-8

    Article  Google Scholar 

  • Chang KH, Park JH, Lee YH, Kim JH, Chun HO, Kim JH et al (2002) Dimethylsulfoxide and sodium butyrate enhance the production of recombinant cyclooxygenase 2 in stably transformed Drosophila melanogaster S2 cells. Biotechnol Lett 24:1353–1359. doi:10.1023/A:1019841829667

    Article  CAS  Google Scholar 

  • Chart H, Smith HR, La Ragione RM, Woodward MJ (2000) An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5α and EQ1. J Appl Microbiol 89:1048–1058. doi:10.1046/j.1365-2672.2000.01211.x

    Article  CAS  Google Scholar 

  • Chen T, Sun H, Lu J et al (2002) Histone acetylation is involved in hsp70 gene transcription regulation in Drosophila melanogaster. Arch Biochem Biophys 408:171–176

    Article  CAS  Google Scholar 

  • Cherbas L, Cherbas P (2007) Transformation of Drosophila cell lines. In: Murhammer D (ed) Baculovirus and insect cell expression protocols. Humana Press, New York, pp 317–340

    Google Scholar 

  • Chiou M-J, Chen L-K, Peng K-C et al (2009) Stable expression in a Chinese hamster ovary (CHO) cell line of bioactive recombinant chelonianin, which plays an important role in protecting fish against pathogenic infection. Dev Comp Immunol 33:117–126. doi:10.1016/j.dci.2008.07.012

    Article  CAS  Google Scholar 

  • Cho HS, Kim YK, Cha HJ (2004) Expression of double foreign protein types following recombinant baculovirus infection of stably transfected Drosophila S2 cells. Enzyme Microb Technol 35:525–531

    Article  CAS  Google Scholar 

  • Chung HY, Hwang-Bo J, Kim S-K, Baek NI, Lee YH, Chung IS et al (2011) Functional expression of Arabidopsis thaliana sterol glycosyltransferase from stably transformed Drosophila melanogaster S2 cells. Biotechnol Bioprocess Eng 16:801–807

    Article  CAS  Google Scholar 

  • de Jongh WA, Salgueiro S, Dyring C (2013) The use of Drosophila S2 cells in R&D and bioprocessing. Pharm Bioprocess 1:197–213. doi:10.4155/pbp.13.18

    Article  Google Scholar 

  • Deml L, Wolf H, Wagner R (1999) High level expression of hepatitis B virus surface antigen in stably transfected Drosophila schneider-2 cells. J Virol Methods 79:191–203

    Article  CAS  Google Scholar 

  • Dorner AJ, Wasley LC, Kaufman RJ (1989) Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J Biol Chem 264:20602–20607

    CAS  Google Scholar 

  • Druzinec D, Salzig D, Brix A et al (2013) Optimization of insect cell based protein production processes—online monitoring, expression systems, scale up. Adv Biochem Eng Biotechnol 136:65–100. doi:10.1007/10_2013_205

    CAS  Google Scholar 

  • Druzinec D, Weiss K, Elseberg C et al (2014) Process analytical technology (PAT) in insect and mammalian cell culture processes: dielectric spectroscopy and focused beam reflectance measurement (FBRM). In: Pörtner R (ed) Animal cell biotechnology. Humana Press, New York, pp 313–341

    Chapter  Google Scholar 

  • Dubreuil RR, Grushko T (1999) Neuroglian and DE-cadherin activate independent cytoskeleton assembly pathways in Drosophila S2 cells. Biochem Biophys Res Commun 265:372–375

    Article  CAS  Google Scholar 

  • Dubreuil RR, MacVicar G, Dissanayake S, Liu C, Homer D, Hortsch M (1996) Neuroglian-mediated cell adhesion induces assembly of the membrane skeleton at cell contact sites. J Cell Biol 133:647–655

    Article  CAS  Google Scholar 

  • Escoubas P, Bernard C, Lambeau G et al (2003) Recombinant production and solution structure of PcTx1, the specific peptide inhibitor of ASIC1a proton-gated cation channels. Protein Sci Publ Protein Soc 12:1332–1343

    Article  CAS  Google Scholar 

  • Friry C, Feliciangeli S, Richard F, Kitabgi P, Rovere C (2002) Production of recombinant large proneurotensin/neuromedin N-derived peptides and characterization of their binding and biological activity. Biochem Biophys Res Commun 290:1161–1168

    Article  CAS  Google Scholar 

  • Gnoth S, Jenzsch M, Simutis R, Lübbert A (2007) Process Analytical Technology (PAT): batch-to-batch reproducibility of fermentation processes by robust process operational design and control. J Biotechnol 132:180–186. doi:10.1016/j.jbiotec.2007.03.020

    Article  CAS  Google Scholar 

  • Graziano MP, Broderick DJ, Tota MR (1998) Expression of G protein-coupled receptors in Drosophila Schneider 2 cells. In: Lynch KR (ed) Receptor biochemistry and methodology series, identification and expression of G protein-coupled receptors. Wiley, New York, pp 181–195

    Google Scholar 

  • Gutsche I, Coulibaly F, Voss JE, Salmon J, d’Alayer J, Ermonval M et al (2011) Secreted dengue virus nonstructural protein NS1 is an atypical barrel-shaped high-density lipoprotein. Proc Natl Acad Sci USA 108:8003–8008

    Article  CAS  Google Scholar 

  • Horwitz AH, Carroll SF, Williams RE, Liu P (2000) Inclusion of S-sepharose beads in the culture medium significantly improves recovery of secreted rBPI21 from transfected CHO-K1 cells. Protein Expr Purif 18:77–85. doi:10.1006/prep.1999.1163

    Article  CAS  Google Scholar 

  • Hwang J, Kim Y (2011) RNA interference of an antimicrobial peptide, Gloverin, of the beet armyworm, Spodoptera exigua, enhances susceptibility to Bacillus thuringiensis. J Invertebr Pathol 108:194–200. doi:10.1016/j.jip.2011.09.003

    Article  CAS  Google Scholar 

  • Jeon H-B, Park J-H, Lee H-H, Kim D-H, Lee H-Y, Shon D-H et al (2012) Enhancement of protein productivity of recombinant hepatitis A virus VP1 in stably transfected Drosophila melanogaster S2 cells. J Bacteriol Virol 42:69–75

    Article  CAS  Google Scholar 

  • Johansson DX, Drakenberg K, Hopmann KH, Schmidt A, Yari F, Hinkula J et al (2007) Efficient expression of recombinant human monoclonal antibodies in Drosophila S2 cells. J Immunol Methods 318:37–46

    Article  CAS  Google Scholar 

  • Junker BH, Reddy J, Gbewonyo K, Greasham R (1994) On-line and in situ monitoring technology for cell density measurement in microbial and animal cell cultures. Bioprocess Eng 10:195–207. doi:10.1007/BF00369530

    Article  Google Scholar 

  • Justice C, Brix A, Friemark D et al (2011) Process control in cell culture technology using dielectric spectroscopy. Biotechnol Adv 29:391–401. doi:10.1016/j.biotechadv.2011.03.002

    Article  CAS  Google Scholar 

  • Kawaoka S, Katsuma S, Daimon T et al (2008) Functional analysis of four Gloverin-like genes in the silkworm, Bombyx mori. Arch Insect Biochem Physiol 67:87–96. doi:10.1002/arch.20223

    Article  CAS  Google Scholar 

  • Kazmin D, Edwards RA, Turner RJ et al (2002) Visualization of proteins in acrylamide gels using ultraviolet illumination. Anal Biochem 301:91–96. doi:10.1006/abio.2001.5488

    Article  CAS  Google Scholar 

  • Kim KR, Kim YK, Cha HJ (2008) Recombinant baculovirus-based multiple protein expression platform for Drosophila S2 cell culture. J Biotechnol 133:116–122

    Article  CAS  Google Scholar 

  • Kollewe C (2013) Production of recombinant proteins in insect cells. Am J Biochem Biotechnol 9:255–271. doi:10.3844/ajbbsp.2013.255.271

    Article  CAS  Google Scholar 

  • Ladner CL, Yang J, Turner RJ, Edwards RA (2004) Visible fluorescent detection of proteins in polyacrylamide gels without staining. Anal Biochem 326:13–20. doi:10.1016/j.ab.2003.10.047

    Article  CAS  Google Scholar 

  • Lee JM, Jeon H-B, Sohn BH, Chung IS (2007) Functional expression of recombinant canstatin in stably transformed Drosophila melanogaster S2 cells. Protein Expr Purif 52:258–264. doi:10.1016/j.pep.2006.11.016

    Article  CAS  Google Scholar 

  • Lee JM, Lee HH, Hwang-Bo J, Shon DH, Kim W, Chung IS (2009) Expression and immunogenicity of recombinant polypeptide VP1 of human hepatitis A virus in stably transformed fruitfly (Drosophila melanogaster) Schneider 2 cells. Biotechnol Appl Biochem 53:101–109

    Article  CAS  Google Scholar 

  • Lee JM, Chung HY, Kim KI, Yoo KH, Hwang-Bo J, Chung IS et al (2011) Synthesis of double-layered rotavirus-like particles using internal ribosome entry site vector system in stably-transformed Drosophila melanogaster. Biotechnol Lett 33:41–46

    Article  CAS  Google Scholar 

  • Lehrer RI, Ganz T (1999) Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 11:23–27. doi:10.1016/S0952-7915(99)80005-3

    Article  CAS  Google Scholar 

  • Lemos MAN, dos Santos AS, Astray RM et al (2009) Rabies virus glycoprotein expression in Drosophila S2 cells. I: design of expression/selection vectors, subpopulations selection and influence of sodium butyrate and culture medium on protein expression. J Biotechnol 143:103–110. doi:10.1016/j.jbiotec.2009.07.003

    Article  CAS  Google Scholar 

  • Li RW, Li C (2006) Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells. BMC Genom 7:234. doi:10.1186/1471-2164-7-234

    Article  Google Scholar 

  • Li Y, Xiang Q, Zhang Q et al (2012a) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37:207–215. doi:10.1016/j.peptides.2012.07.001

    Article  CAS  Google Scholar 

  • Li YZ, Counor D, Lu P et al (2012b) A specific and sensitive antigen capture assay for NS1 protein quantitation in Japanese encephalitis virus infection. J Virol Methods 179:8–16. doi:10.1016/j.jviromet.2011.06.008

    Article  CAS  Google Scholar 

  • Lieberman MM, Clements DE, Ogata S, Wang G, Corpuz G, Wong T et al (2007) Preparation and immunogenic properties of a recombinant West Nile subunit vaccine. Vaccine 25:414–423

    Article  CAS  Google Scholar 

  • Lim HJ, Cha HJ (2006) Observation and modeling of induction effect on human transferrin production from stably transfected Drosophila S2 cell culture. Enzyme Microb Technol 39:208–214. doi:10.1016/j.enzmictec.2005.10.021

    Article  CAS  Google Scholar 

  • Lundström A, Liu G, Kang D et al (2002) Trichoplusia ni Gloverin, an inducible immune gene encoding an antibacterial insect protein. Insect Biochem Mol Biol 32:795–801. doi:10.1016/S0965-1748(01)00162-X

    Article  Google Scholar 

  • Mackintosh JA, Gooley AA, Karuso PH et al (1998) A Gloverin-like antibacterial protein is synthesized in Helicoverpa armigera following bacterial challenge. Dev Comp Immunol 22:387–399. doi:10.1016/S0145-305X(98)00025-1

    Article  CAS  Google Scholar 

  • Moraes ÂM, Jorge SAC, Astray RM et al (2012) Drosophila melanogaster S2 cells for expression of heterologous genes: from gene cloning to bioprocess development. Biotechnol Adv 30:613–628. doi:10.1016/j.biotechadv.2011.10.009

    Article  CAS  Google Scholar 

  • Moreno-Habel DA, Biglang-awa IM, Dulce A et al (2012) Inactivation of the budded virus of Autographa californica M nucleopolyhedrovirus by Gloverin. J Invertebr Pathol 110:92–101. doi:10.1016/j.jip.2012.02.007

    Article  CAS  Google Scholar 

  • Müller H, Salzig D, Czermak P (2015) Considerations for the process development of insect-derived antimicrobial peptide production. Biotechnol Prog 31:1–11. doi:10.1002/btpr.2002

    Article  Google Scholar 

  • Negrete A, Esteban G, Kotin RM (2007) Process optimization of large-scale production of recombinant adeno-associated vectors using dielectric spectroscopy. Appl Microbiol Biotechnol 76:761–772. doi:10.1007/s00253-007-1030-9

    Article  CAS  Google Scholar 

  • Nilsen SL, Castellino FJ (1999) Expression of human plasminogen in Drosophila schneider S2 cells. Protein Expr Purif 16:136–143

    Article  CAS  Google Scholar 

  • Parachin NS, Mulder KC, Viana AAB et al (2012) Expression systems for heterologous production of antimicrobial peptides. Peptides 38:446–456. doi:10.1016/j.peptides.2012.09.020

    Article  CAS  Google Scholar 

  • Park JH, Lee JM, Chung IS (1999) Production of recombinant endostatin from stably transformed Drosophila melanogaster S2 cells. Biotechnol Lett 21:729–733. doi:10.1023/A:1005510821928

    Article  CAS  Google Scholar 

  • Park JH, Kyung-Hwa C, Lee YH, Hae-Yeong K, Jai-Myung Y, In-Sik C (2002) Production of recombinant rotavirus capsid protein VP7 from stably transformed Drosophila melanogaster S2 cells. J Microbiol Biotechnol 12:563–568

    CAS  Google Scholar 

  • Park J-H, Hwang I-S, Kim K-I, Lee J-M, Park Y-M, Park C-H et al (2008) Functional expression of recombinant human ribonuclease/angiogenin inhibitor in stably transformed Drosophila melanogaster S2 cells. Cytotechnology 57:93–99. doi:10.1007/s10616-008-9126-3

    Article  CAS  Google Scholar 

  • Perret BG, Wagner R, Lecat S, Brillet K, Rabut G, Bucher B et al (2003) Expression of EGFP-amino-tagged human mu opioid receptor in Drosophila Schneider 2 cells: a potential expression system for large-scale production of G-protein coupled receptors. Protein Expr Purif 31:123–132

    Article  CAS  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Santos MG, Jorge SAC, Brillet K, Pereira CA (2007) Improving heterologous protein expression in transfected Drosophila S2 cells as assessed by EGFP expression. Cytotechnology 54:15–24

    Article  CAS  Google Scholar 

  • Santos NGL, Rocca MP, Pereira CA et al (2016) Impact of recombinant Drosophila S2 cell population enrichment on expression of rabies virus glycoprotein. Cytotechnology 68:2605–2611. doi:10.1007/s10616-016-9984-z

    Article  CAS  Google Scholar 

  • Schetz JA, Shankar EPN (2004) Protein expression in the Drosophila Schneider 2 cell system. In: Gerfen CR, Holmes A, Sibley D, Skolnick P, Wray S (eds) Current protocols in neuroscience. Wiley, New York, pp 4.16.1–4.16.15

    Google Scholar 

  • Schetz JA, Kim O-J, Sibley DR (2003) Pharmacological characterization of mammalian D1 and D2 dopamine receptors expressed in Drosophila schneider-2 cells. J Recept Signal Transduct Res 23:99–109

    Article  CAS  Google Scholar 

  • Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372. doi:10.1007/s00253-004-1656-9

    Article  CAS  Google Scholar 

  • Schneider I (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27:353–365

    CAS  Google Scholar 

  • Scotter AJ, Kuntz DA, Saul M et al (2006) Expression and purification of sea raven type II antifreeze protein from Drosophila melanogaster S2 cells. Protein Expr Purif 47:374–383. doi:10.1016/j.pep.2005.10.028

    Article  CAS  Google Scholar 

  • Seitz V, Clermont A, Wedde M et al (2003) Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Dev Comp Immunol 27:207–215. doi:10.1016/S0145-305X(02)00097-6

    Article  CAS  Google Scholar 

  • Seok YJ, Kim KI, Yoo KH, Hwang-Bo J, Lee HH, Shon DH et al (2010) Expression and immunogenicity of a recombinant chimeric protein of human colorectal cancer antigen GA733-2 and an Fc antibody fragment in stably transformed Drosophila melanogaster S2 cells. Appl Biochem Biotechnol 162:1435–1445

    Article  CAS  Google Scholar 

  • Shin HS, Cha HJ (2002) Facile and statistical optimization of transfection conditions for secretion of foreign proteins from insect Drosophila S2 Cells using green fluorescent protein reporter. Biotechnol Prog 18:1187–1194

    Article  CAS  Google Scholar 

  • Shin HS, Cha HJ (2003) Statistical optimization for immobilized metal affinity purification of secreted human erythropoietin from Drosophila S2 cells. Protein Expr Purif 28:331–339

    Article  CAS  Google Scholar 

  • Shin HS, Lim HJ, Cha HJ (2003) Quantitative monitoring for secreted production of human Interleukin-2 in stable insect Drosophila S2 cells using a green fluorescent protein fusion partner. Biotechnol Prog 19:152–157

    Article  CAS  Google Scholar 

  • Silva JLC, Barbosa JF, Bravo JP et al (2010) Induction of a Gloverin-like antimicrobial polypeptide in the sugarcane borer Diatraea saccharalis challenged by septic injury. Braz J Med Biol Res 43:431–436. doi:10.1590/S0100-879X2010005000010

    Article  CAS  Google Scholar 

  • Smith SM (2011) Strategies for the purification of membrane proteins. Methods Mol Biol 681:485–496. doi:10.1007/978-1-60761-913-0_29

    Article  CAS  Google Scholar 

  • Søndergaard L (1996) Drosophila cells can be grown to high cell densities in a bioreactor. Biotechnol Tech 10:161–166. doi:10.1007/BF00158939

    Article  Google Scholar 

  • Swiech K, Rossi N, Astray RM, Suazo CAT (2008) Enhanced production of recombinant rabies virus glycoprotein (rRVGP) by Drosophila melanogaster S2 cells through control of culture conditions. Cytotechnology 57:67–72. doi:10.1007/s10616-008-9134-3

    Article  CAS  Google Scholar 

  • Uribe E, Venkatesan M, Rose DR, Ewart KV (2013) Expression of recombinant Atlantic salmon serum C-type lectin in Drosophila melanogaster Schneider 2 cells. Cytotechnology 65:513–521. doi:10.1007/s10616-012-9505-7

    Article  CAS  Google Scholar 

  • Valle MA, Kester MB, Burns AL, Marx SJ, Spiegel AM, Shiloach J (2001) Production and purification of human menin from Drosophila melanogaster S2 cells using stirred tank reactor. Cytotechnology 35:127–135

    Article  CAS  Google Scholar 

  • van Die IM, Zuidweg EM, Bergmans JE, Hoekstra WP (1984) Transformability of galE variants derived from uropathogenic Escherichia coli strains. J Bacteriol 158:760–761

    Google Scholar 

  • Vatandoost J, Bos MHA (2016) Efficient expression of functional human coagulation factor IX in stably-transfected Drosophila melanogaster S2 cells; comparison with the mammalian CHO system. Biotechnol Lett 38:1691–1698. doi:10.1007/s10529-016-2156-6

    Article  CAS  Google Scholar 

  • Vogel H, Altincicek B, Glöckner G, Vilcinskas A (2011) A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genom 12:308. doi:10.1186/1471-2164-12-308

    Article  Google Scholar 

  • Wang L, Hu H, Yang J, Wang F, Kaisermayer C, Zhou P (2012) High yield of human monoclonal antibody produced by stably transfected Drosophila Schneider 2 cells in perfusion culture using wave bioreactor. Mol Biotechnol 52:170–179. doi:10.1007/s12033-011-9484-5

    Article  CAS  Google Scholar 

  • Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093. doi:10.1093/nar/gkv1278

    Article  Google Scholar 

  • Wickham T, Nemerow G, Wood HAZ, Shuler ML (1995) Comparison of different cell lines for the production of recombinant baculovirus proteins. In: Richardson C (ed) Baculovirus expression protocols. Humana Press, New York, pp 385–395

    Chapter  Google Scholar 

  • Xia X, Yu L, Xue M et al (2015) Genome-wide characterization and expression profiling of immune genes in the diamondback moth, Plutella xylostella (L.). Sci Rep 5:9877. doi:10.1038/srep09877

    Article  CAS  Google Scholar 

  • Xu X-X, Zhong X, Yi H-Y, Yu X-Q (2012) Manduca sexta Gloverin binds microbial components and is active against bacteria and fungi. Dev Comp Immunol 38:275–284. doi:10.1016/j.dci.2012.06.012

    Article  CAS  Google Scholar 

  • Xu XX, Jin FL, Wang YS, Freed S, Hu QB, Ren SX (2015) Molecular cloning and characterization of Gloverin from the diamondback moth, Plutella xylostella L. and its interaction with bacterial membrane. World J Microbiol Biotechnol 31:1529–1541. doi:10.1007/s11274-015-1901-7

    Article  CAS  Google Scholar 

  • Yang L, Song Y, Li X et al (2012) HIV-1 virus-like particles produced by stably transfected Drosophila S2 cells: a desirable vaccine component. J Virol 86:7662–7676. doi:10.1128/JVI.07164-11

    Article  CAS  Google Scholar 

  • Yi H-Y, Deng X-J, Yang W-Y et al (2013) Gloverins of the silkworm Bombyx mori: structural and binding properties and activities. Insect Biochem Mol Biol 43:612–625. doi:10.1016/j.ibmb.2013.03.013

    Article  CAS  Google Scholar 

  • Yoshida H, Yoshizawa T, Shibasaki F et al (2002) Chemical chaperones reduce aggregate formation and cell death caused by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol Dis 10:88–99

    Article  CAS  Google Scholar 

  • Zhao YM, Chen X, Sun H et al (2006) Effects of histone deacetylase inhibitors on transcriptional regulation of the hsp70 gene in Drosophila. Cell Res 16:566–576. doi:10.1038/sj.cr.7310074

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Hessen State Ministry of Higher Education, Research and the Arts (Grant No. LOEWE AZ: III L5-518/19.004) for financial support within the Hessen initiative for scientific and economic excellence (LOEWE-Program). The authors acknowledge Dr. Richard M. Twyman for editing the paper.

Author contributions

JZ conceived, designed and conducted the experiments, and wrote the manuscript; TW helped to draft and to revise the manuscript; PC helped to draft and to revise the manuscript, and supervised the research; All authors have given their approval for this final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Czermak.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Appendices

Appendix 1: Statistical assessment of normality and homoscedasticity for the comparison of the expression of the parental polyclonal cells and the monoclonal cell line D7

Statistical assessment of expression data was conducted using R v3.2.3 (R Core Team 2014). Because the normal qq plots in Fig. 10 do not show any points outside their confidence intervals, there is no reason to doubt the validity of the assumption of normality for the data in both groups. The high p value of 0.9619 in a subsequent F-test indicates that there is insufficient evidence to reject the assumption of homoscedasticity. Consequently, Student’s two-sample t test was used to compare the means of both datasets.

Fig. 10
figure 10

Normal qq plots for the expression datasets used to compare the monoclonal cell line and polyclonal culture

Appendix 2: Response surface method for the determination of optimal induction conditions

See Tables 1 and 2.

Table 1 ANOVA for the quadratic model that describes GmGlv production after 4 days as a function of cell concentration (A) and CuSO4 concentration (B)
Table 2 ANOVA for the cubic model that describes cell viability after 4 days as a function of cell concentration (A) and CuSO4 concentration (B)

Appendix 3: Time course of additional process variables during the cultivation of rS2 cells for the production of GmGlv

See Fig. 11.

Fig. 11
figure 11

Time course of standard bioreactor parameters: a stirrer speed (n, black), dissolved oxygen (pO2, red), gas mix composition (blue) and pH (gray). b Glucose consumption during cultivation

Appendix 4: Comparison of the induction conditions in 37 studies

See Table 3.

Table 3 Comparison of the induction conditions in 37 studies using the Mt promoter in rS2 cells

Appendix 5: Site-specific binding of GmGlv to LPS

There is no broad agreement on the exact position at which Gloverin binds to LPS. The latter comprises three major parts: lipid A, a carbohydrate core region, and the O-specific antigen. If all parts are present, the LPS is regarded as smooth. If the outer parts are absent, LPS is regarded as rough or deep rough depending on the degree of truncation (Ra, Rc, Rd, and Re LPS). BmGv is inactive against E. coli DH5alpha but active against the rough mutants E. coli D21 (Ra-LPS), E. coli D21e7 (Rc-LPS), E. coli D21f1 (Rd-LPS) and E. coli D21f2 (Re-LPS) (Yi et al. 2013). Furthermore, TnGlv (Lundström et al. 2002) and HgGlv (Axén et al. 1997) also show activity primarily against E. coli D21f2. These results indicate that most (positively charged) Gloverins probably bind to the (negatively charged) inner core region or lipid A. The two E. coli strains used in this study have not been comprehensively characterized in terms of their LPS phenotype, but their parental stains carry short LPS (Chart et al. 2000). Furthermore E. coli Rosetta Gami 2 carries the galE–galK mutation, which blocks the synthesis of UDP-galactose and its incorporation in the LPS, thus producing a truncated LPS (van Die et al. 1984). These data suggest that GmGlv also binds to the inner part of the LPS. However, MsGlv binds to the outer core region and the O-specific antigen of LPS and also to other fungal and bacterial membrane compounds, but it does not interact with Rc, Rd or Re LPS or with lipid A (Xu et al. 2012).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zitzmann, J., Weidner, T. & Czermak, P. Optimized expression of the antimicrobial protein Gloverin from Galleria mellonella using stably transformed Drosophila melanogaster S2 cells. Cytotechnology 69, 371–389 (2017). https://doi.org/10.1007/s10616-017-0068-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-017-0068-5

Keywords

Navigation