Skip to main content
Log in

Carbohydrates–chitosan composite carrier for Vero cell culture

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

In this study, carbohydrate–chitosan composite including glucose–chitosan, sucrose–chitosan and starch–chitosan with varied carbohydrate concentrations were prepared as carriers for Vero cell culture. Our results show that among these composites, 30 % starch–chitosan composite (STC) were the best carriers for the growth of Vero cells. The initial number of attached cells on the surface of composite carriers did not have any significant effect on subsequent cell production. A higher glucose level in the growth medium during the exponential phase of cell growth, however, played an important factor for cell production. Vero cells on the STC carriers were able to convert starch inside the composite carriers into glucose and further utilized the glucose for their growth. Moreover, by crosslink with serum the STC carriers supported an even better cell production in the normal medium without adding fetal bovine serum, as well as a good extracellular virus production. The STC composite is therefore a promising alternative carrier for Vero cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adina C, Fetea F, Taoutaou A, Socaciu C (2010) Application of FTIR spectroscopy for a rapid determination of some hydrolytic enzymes activity on sea buckthorn substrate. Rom Biotechnol Lett 15:5738–5744

    CAS  Google Scholar 

  • Alberta Araújo M, Cunha AM, Mota M (2004) Enzymatic degradation of starch-based thermoplastic compounds used in protheses: identification of the degradation products in solution. Biomaterials 25:2687–2693

    Article  Google Scholar 

  • Bačáková L, Novotná K, Pařízek M (2014) Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction. Physiol Res 63:22

    Google Scholar 

  • Baran ET, Mano JF, Reis RL (2004) Starch–chitosan hydrogels prepared by reductive alkylation cross-linking. J Mater Sci Mater Med 15:759–765

    Article  CAS  Google Scholar 

  • Baran ET, Tuzlakoglu K, Mano JF, Reis RL (2012) Enzymatic degradation behavior and cytocompatibility of silk fibroin–starch–chitosan conjugate membranes. Mater Sci Eng C Mater Biol Appl 32:1314–1322

    Article  CAS  Google Scholar 

  • Brunner D, Frank J, Appl H, Schöffl H, Pfaller W, Gstraunthaler G (2010) Serum-free cell culture: the serum-free media interactive online database. Altex 27:53–62

    Google Scholar 

  • da Costa-Silva TA, da Silva Meira C, Frazzatti-Gallina N, Pereira-Chioccola VL (2012) Toxoplasma gondii antigens: recovery analysis of tachyzoites cultivated in Vero cell maintained in serum free medium. Exp Parasitol 130:463–469

    Article  Google Scholar 

  • Gao W, Lai JC, Leung SW (2012) Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications. Front Physiol 3:321

    Article  Google Scholar 

  • Han Y, Liu XM, Liu H, Li SC, Wu BC, Ye LL, Wang QW, Chen ZL (2006) Cultivation of recombinant Chinese hamster ovary cells grown as suspended aggregates in stirred vessels. J Biosci Bioeng 102:430–435

    Article  CAS  Google Scholar 

  • Huang CB, Robert J, Mohini S, Bradley A, Martin H (2006) Production, characterization, and mechanical properities of starch modified by Ophiostoma Spp. BioResources 1:257–269

    Google Scholar 

  • Kishimoto S, Nakamura S, Nakamura S, Kanatani Y, Hattori H, Tanaka Y, Harada Y, Tagawa M, Mori Y, Maehara T, Ishihara M (2009) Fragmin/protamine microparticle-coated matrix immobilized cytokines to stimulate various cell proliferations with low serum media. Artif Organs 33:431–438

    Article  CAS  Google Scholar 

  • Li J, Pan J, Zhang L, Yu Y (2003) Culture of hepatocytes on fructose-modified chitosan scaffolds. Biomaterials 24:2317–2322

    Article  CAS  Google Scholar 

  • Lu DR (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3:366–375

    Article  CAS  Google Scholar 

  • Luangbudnark W, Viyoch J, Laupattarakasem W, Surakunprapha P, Laupattarakasem P (2012) Properties andbiocompatibility of chitosan and silk fibroin blend films for application in skin tissue engineering. Sci World J 2012:697201

    Article  Google Scholar 

  • Maitra J, Singh N (2014) Swelling behavior of starch chitosan polymeric blend. Adv Polym Sci Technol Int J 4:22–27

    Google Scholar 

  • Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454

    Article  CAS  Google Scholar 

  • Medhat I, Moussa A, Hanan E, Abraham FJ, Aned DL (2006) Analysis of the structure and vibrational spectra of glucose and fructose. Eclet Quim 31:15–21

    Article  Google Scholar 

  • Merten OW, Cruz PE, Rochette C, Geny-Fiamma C, Bouquet C, Gonçalves D, Danos O, Carrondo MJ (2001) Comparison of different bioreactor systems for the production of high titer retroviral vectors. Biotechnol Prog 17:326–335

    Article  CAS  Google Scholar 

  • Nienow AW (2006) Reactor engineering in large scale animal cell culture. Cytotechnology 50:9–33

    Article  CAS  Google Scholar 

  • Reid LM (1990) Stem cell biology, hormone/matrix synergies and liver differentiation. Curr Opin Cell Biol 2:121–130

    Article  CAS  Google Scholar 

  • Rodrigues AI, Gomes ME, Leonor IB, Reis RL (2012) Bioactive starch-based scaffolds and human adipose stem cells are a good combination for bone tissue engineering. Acta Biomater 8:3765–3776

    Article  CAS  Google Scholar 

  • Silva SS, Santos M, Coutinho O, Mano J, Reis R (2005) Physical properties and biocompatibility of chitosan/soy blended membranes. J Mater Sci Mater Med 16:575–579

    Article  CAS  Google Scholar 

  • Silva SS, Mano JF, Reis RL (2010) Potential applications of natural origin polymer-based systems in soft tissue regeneration. Crit Rev Biotechnol 30:200–221

    Article  CAS  Google Scholar 

  • Silva SS, Caridade SG, Mano JF, Reis RL (2013) Effect of crosslinking in chitosan/aloe vera-based membranes for biomedical applications. Carbohydr Polym 98:581–588

    Article  CAS  Google Scholar 

  • Singh N, Maitra J (2015) Antibacterial evaluation of starch and chitosan based polymeric blend. IOSR J Appl Chem 8:26–32

    Google Scholar 

  • Subramanian SB, Francis AP, Devasena T (2014) Chitosan-starch nanocomposite particles as a drug carrier for the delivery of bis-desmethoxy curcumin analog. Carbohydr Polym 114:170–178

    Article  CAS  Google Scholar 

  • Toriniwa H, Komiya T (2008) Long-term stability of Vero cell-derived inactivated Japanese encephalitis vaccine prepared using serum-free medium. Vaccine 26:3680–3689

    Article  CAS  Google Scholar 

  • Trabelsi K, Rourou S, Loukil H, Majoul S, Kallel H (2006) Optimization of virus yield as a strategy to improve rabies vaccine production by Vero cells in a bioreactor. J Biotechnol 121:261–271

    Article  CAS  Google Scholar 

  • van der Loo JC, Swaney WP, Grassman E, Terwilliger A, Higashimoto T, Schambach A, Baum C, Thrasher AJ, Williams DA, Nordling DL, Reeves L, Malik P (2012) Scale-up and manufacturing of clinical-grade self-inactivating gamma-retroviral vectors by transient transfection. Gene Ther 19:246–254

    Article  Google Scholar 

  • Wang C, Yang F, Meng F, Zhang H, Xue Y, Fu G (2010) High flux and antifouling filtration membrane based on non-woven fabric with chitosan coating for membrane bioreactors. Bioresour Technol 101:5469–5474

    Article  CAS  Google Scholar 

  • Wu SC, Liu CC, Lian WC (2004) Optimization of microcarrier cell culture process for the inactivated enterovirus type 71 vaccine development. Vaccine 22:3858–3864

    Article  CAS  Google Scholar 

  • Zhang H, Wang W, Quan C, Fan S (2010) Engineering considerations for process development in mammalian cell cultivation. Curr Pharm Biotechnol 11:103–112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Ching Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YC., Chen, GT. & Wu, SC. Carbohydrates–chitosan composite carrier for Vero cell culture. Cytotechnology 68, 2649–2658 (2016). https://doi.org/10.1007/s10616-016-9989-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-9989-7

Keywords

Navigation