Skip to main content
Log in

Recent developments in ex vivo platelet production

  • Review
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The platelet is a component of blood that functions to initiate blood clotting. Abnormal platelet count and function can lead to a life-threatening condition caused by excessive bleeding. At present, platelet supply for transfusion can be obtained only from platelet donation. However, platelets cannot be stored for longer than 7 days, meaning that routine isolation is required to maintain platelet supply for transfusion. To mitigate for potential platelet shortages, several strategies have been proposed to generate platelets ex vivo. By employing both of natural and artificial approaches, several researchers have successfully generated biomaterials with characteristics similar to human-derived platelets. Their reports indicated that the biomaterials could mimic the aggregation of human-isolated platelets, further suggesting the possibility to substitute or complement human-isolated platelets. The current review summarizes the progress in ex vivo platelet production and gives a prospect for the possible approaches to achieving a feasible platelet factory, based on the Good Manufacturing Practice standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akashi K, Traver D, Miyamoto T, Weissman I (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197

    Article  CAS  Google Scholar 

  • Avanzi M, Chen A, He W, Mitchell W (2012) Optimizing megakaryocyte polyploidization by targeting multiple pathways of cytokinesis. Transfusion 52:2406–2413

    Article  CAS  Google Scholar 

  • Avecilla S, Hattori K, Heissig B, Tejada R, Liao F et al (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10:64–71

    Article  CAS  Google Scholar 

  • Bartley T, Bogenberger J, Hunt P, Li Y, Lu H, Martin F, Chang M-S, Samal B, Nichol JL, Swift S, Johnson MJ, Hsu R-Y, Parker VP, Suggs S, Skrine JD, Merewether LA, Clogston C, Hsu E, Hokom MM, Hornkohl A, Choi E, Pangelinan M, Sun Y, Mar V, McNinch J, Simonet L, Jacobsen F, Xie C, Shutter J, Chute H, Basu R, Selander L, Trollinger D, Sieu L, Padilla D, Trail G, Elliott G, Izumi R, Covey T, Crouse J, Garcia A, Xu W, Del Castillo J, Biron J, Cole S, Hu MC-T, Pacifici R, Ponting I, Saris C, Wen D, Yung YP, Lin H, Rosselman RA (1994) Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell 77:1117–1124

    Article  CAS  Google Scholar 

  • Beers J, Linask K, Chen J, Siniscalchi L, Lin Y, Zheng W, Rao M, Chen G (2015) A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture. Sci Rep 5. doi:10.1038/srep11319

  • Bosse R, Singhofer-Wowra M, Rosenthal F, Schulz G (1997) Good manufacturing practice production of human stem cells for somatic cell and gene therapy. Stem Cells 15:275–280

    Article  Google Scholar 

  • Carter M, Wilson J, Redpath G, Hayes P, Mitchell C (2011) Donor recruitment in the 21st century: challenges and lessons learned in the first decade. Transfus Apheres Sci 45:31–43

    Article  Google Scholar 

  • Chang Y, Bluteau D, Debili N, Vainchenker W (2007) From hematopoietic stem cells to platelets. J Thromb Haemost 5:318–327

    Article  CAS  Google Scholar 

  • Chen T, Yao C, Chu I, Chuang T, Hsieh T, Hwang S (2009a) Large generation of megakaryocytes from serum-free expanded human CD34+ cells. Biochem Biophys Res Commun 378:112–117

    Article  CAS  Google Scholar 

  • Chen T, Hwang S, Chu I, Hsu S, Hsieh T, Yao C (2009b) Characterization and transplantation of induced megakaryocytes from hematopoietic stem cells for rapid platelet recovery by a two-step serum-free procedure. Exp Hematol 37:1330–1339

    Article  CAS  Google Scholar 

  • Choi E, Nichol J, Hokom M, Hornkohl A, Hunt P (1995) Platelet generated in vitro from proplatelet displaying human megakaryocytes are functional. Blood 85:402–413

    CAS  Google Scholar 

  • Deutsch V, Tomer A (2006) Megakaryocyte development and platelet production. Br J Haematol 134:453–466

    Article  CAS  Google Scholar 

  • Doshi N, Orje J, Molins B, Smith J, Mitragotri S, Ruggeri Z (2012) Platelet mimetic particles for targeting thrombi in flowing blood. Adv Mater 24:3864–3869

    Article  CAS  Google Scholar 

  • Feigal E, Tsokas K, Viswanathan S, Zhang J, Priest C, Pearcee J, Mount N (2014) Proceedings: international regulatory considerations on development pathways for cell therapies. Stem Cells Transl Med 3:879–887

    Article  Google Scholar 

  • Feng Q, Shabrani N, Thon J, Huo H, Thiel A, Machlus K, Kim K, Brooks J, Li F, Luo C, Kimbrel EA (2014) Scalable generation of universal platelets from human induced pluripotent stem cells. Stem Cell Reports 3:817–831

    Article  CAS  Google Scholar 

  • Fugman D, Witte D, Jones C, Aronow B, Lieberman M (1990) In vitro establishment and characterization of a human megakaryoblastic cell line. Blood 75:1252–1261

    CAS  Google Scholar 

  • Gandhi M, Drachman J, Reems J, Thorning D, Lannutti B (2005) A novel strategy for generating platelet-like fragments from megakaryocytic cell lines and human progenitor cells. Blood Cells Mol Dis 35:70–73

    Article  CAS  Google Scholar 

  • Giammona L, Fuhrken P, Papoutsakis E, Miller W (2006) Nicotinamide (vitamin B3) increases the polyploidisation and proplatelet formation of cultured primary human megakaryocytes. Br J Haematol 135:554–566

    Article  CAS  Google Scholar 

  • Gitz E, Koekman C, van den Heuvel D, Deckmyn H, Akkerman J, Gerritsen H, Urbanus R (2012) Improved platelet survival after cold storage by prevention of glycoprotein Ib alpha clustering in lipid rafts. Haematol Hematol J 97:1873–1881

    Article  CAS  Google Scholar 

  • Greenberg S, Rosenthal D, Greeley T, Tantravahi R, Handin R (1988) Characterization of a new megakaryocytic cell line: the Dami cell. Blood 72:1968–1977

    CAS  Google Scholar 

  • Gresele P (2008) Platelets in hematologic and cardiovascular disorders: a clinical handbook. Cambridge University Press, Cambridge

    Google Scholar 

  • Hoffbrand A, Moss P, Pettit J (2011) Essential haematology. Wiley, Oxford

    Google Scholar 

  • Hoffman R, Yang H, Bruno E, Straneva J (1985) Purification and partial characterization of a megakaryocyte colony-stimulating factor from human plasma. J Clin Investig 75:1174–1182

    Article  CAS  Google Scholar 

  • Jiang F, Jia Y, Cohen I (2002) Fibronectin- and protein kinase C-mediated activation of ERK/MAPK are essential for proplateletlike formation. Blood 99:3579–3584

    Article  CAS  Google Scholar 

  • Junt T, Schulze H, Chen Z, Massberg S, Goerge T, Krueger A, Wagner DD, Graf T, Italiano JE Jr, Shivdasani RA, von Andrian UH (2007) Dynamic visualization of thrombopoiesis within bone marrow. Science 317:1767–1770

    Article  CAS  Google Scholar 

  • Kato T, Ogami K, Shimada Y, Iwamatsu A, Sohma Y, Akahori H, Horie K, Kokubo A, Kudo Y, Maeda E, Kobayashi K, Ohashi H, Ozawa T, Inoue H, Kawamura K, Miyazaki H (1995) Purification and characterization of thrombopoietin. J Biochem 118:229–236

    CAS  Google Scholar 

  • Kempner M, Felder R (2002) A review of cell culture automation. J Lab Autom 7:56–62

    Article  Google Scholar 

  • Komatsu N, Kunitama M, Yamada M, Hagiwara T, Kato T, Miyazaki H, Eguchi M, Yamamoto M, Miura Y (1996) Establishment and characterization of the thrombopoietin-dependent megakaryocytic cell line, UT-7/TPO. Blood 87:4552–4560

    CAS  Google Scholar 

  • Konagaya S, Ando T, Yamauchi T, Suemori H, Iwata H (2015) Long-term maintenance of human induced pluripotent stem cells by automated cell culture system. Sci Rep 5: 16647. doi:10.1038/srep16647

    Article  CAS  Google Scholar 

  • Lannutti B, Blake N, Gandhi M, Reems J, Drachman J (2005) Induction of polyploidization in leukemic cell lines and primary bone marrow by Src kinase inhibitor SU6656. Blood 105:3875–3878

    Article  CAS  Google Scholar 

  • Limb J, Song D, Jeon M, Han S, Han G, Jhon G, Bae Y, Kim J (2015) 2-(Trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate promotes megakaryocytic differentiation of myeloid leukaemia cells and primary human CD34+ haematopoietic stem cells. J Tissue Eng Regen Med 9:435–446

    Article  CAS  Google Scholar 

  • Lok S, Kaushansky K, Holly R, Kuijper J, Loftonday C, Oort P, Grant FJ, Heipel MD, Burkhead SK, Kramer JM, Bell LA, Sprecher CA, Blumberg H, Johnson R, Prunkard D, Ching AFT, Mathewes SL, Bailey MC, Forstrom JW, Buddle MM, Osborn SG, Evans SJ, Sheppard PO, Presnell SR, O'Hara PJ, Hagen FS, Roth GJ, Foster DC (1994) Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature 369:565–568

    Article  CAS  Google Scholar 

  • Lordier L, Jalil A, Aurade F, Larbret F, Larghero J, Debili N, Vainchenker W, Chang Y (2008) Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling. Blood 112:3164–3174

    Article  CAS  Google Scholar 

  • Lu S, Li F, Yin H, Feng Q, Kimbrel E, Hahm E, Thon J, Wang W, Italiano JE, Cho J, Lanza R (2011) Platelets generated from human embryonic stem cells are functional in vitro and in the microcirculation of living mice. Cell Res 21:530–545

    Article  CAS  Google Scholar 

  • Machlus K, Italiano J (2013) The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol 201:785–796

    Article  CAS  Google Scholar 

  • Matsunaga T, Tanaka I, Kobune M, Kawano Y, Tanaka M, Kuribayashi K, Iyama S, Sato T, Sato Y, Takimoto R, Takayama T, Kato J, Ninomiya T, Hamada H, Niitsu Y (2006) Ex vivo large-scale generation of human platelets from cord blood CD34+ cells. Stem Cells 24:2877–2887

    Article  CAS  Google Scholar 

  • Mattia G, Vulcano F, Milazzo L, Barca A, Macioce G, Giampaolo A, Hassan H (2002) Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. Blood 99:888–897

    Article  CAS  Google Scholar 

  • Mazur E, Basilico D, Newton J, Cohen J, Charland C, Sohl P, Narendran A (1990) Isolation of large numbers of enriched human megakaryocytes from liquid cultures of normal peripheral blood progenitor cells. Blood 76:1771–1782

    CAS  Google Scholar 

  • Miyazaki R, Ogata H, Iguchi T, Sogo S, Kushida T, Ito T, Inaba M, Ikehara S, Kobayashi Y (2000) Comparative analyses of megakaryocytes derived from cord blood and bone marrow. Br J Haematol 108:602–609

    Article  CAS  Google Scholar 

  • Mostafa S, Miller W, Papoutsakis E (2000) Oxygen tension influences the differentiation, maturation and apoptosis of human megakaryocytes. Br J Haematol 111:879–889

    CAS  Google Scholar 

  • Nachmias V, Yoshida K (1988) The cytoskeleton of the blood platelet: a dynamic structure. Adv Mol Cell Biol 2:29

    Article  Google Scholar 

  • Nakagawa Y, Nakamura S, Nakajima M, Endo H, Dohda T, Takayama N, Nakauchi H, Arai F, Fukuda T, Eto K (2013) Two differential flows in a bioreactor promoted platelet generation from human pluripotent stem cell-derived megakaryocytes. Exp Hematol 41:742–748

    Article  CAS  Google Scholar 

  • Nakamura S, Takayama N, Hirata S, Seo H, Endo H, Ochi K, Fujita K, Koike T, Harimoto K, Dohda T, Watanabe A, Okita K, Takahashi N, Sawaguchi A, Yamanaka S, Nakauchi H, Nishimura S, Eto K (2014) Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell 14:535–548

    Article  CAS  Google Scholar 

  • Nishikii H, Eto K, Tamura N, Hattori K, Heissig B, Kanaji T, Sawaguchi A, Goto S, Ware J, Nakauchi H (2008) Metalloproteinase regulation improves in vitro generation of efficacious platelets from mouse embryonic stem cells. J Exp Med 205:1917–1927

    Article  CAS  Google Scholar 

  • Norol F, Vitrat N, Cramer E, Guichard J, Burstein S, Vainchenker W, Debili N (1998) Effects of cytokines on platelet production from blood and marrow CD34+ cells. Blood 91:830–843

    CAS  Google Scholar 

  • Nurhayati R (2015) Promoted megakaryocytic differentiation of megakaryoblastic cell lines for platelet production in vitro. Dissertation, Osaka University

  • Nurhayati R, Ojima Y, Nomura N, Taya M (2014) Promoted megakaryocytic differentiation of K562 cells through oxidative stress caused by near ultraviolet irradiation. Cell Mol Biol Lett 19:590–600

    Article  CAS  Google Scholar 

  • Nurhayati R, Ojima Y, Taya M (2015) BMS-777607 promotes megakaryocytic differentiation and induces polyploidization in the CHRF-288-11 cells. Hum Cell 28:65–72

    Article  CAS  Google Scholar 

  • Odell T, Jackson C, Friday T, Charsha D (1969) Effect of thrombocytopenia on megakaryocytopoiesis. Br J Haematol 17:91–101

    Article  Google Scholar 

  • Ohmine S, Dietz A, Deeds M, Hartjes K, Miller D, Thatava T, Sakuma T, Kudva Y, Ikeda Y (2011) Induced pluripotent stem cells from GMP-grade hematopoietic progenitor cells and mononuclear myeloid cells. Stem Cell Res Ther 2:46. doi:10.1186/scrt87

    Article  CAS  Google Scholar 

  • Ojima Y, Duncan M, Nurhayati R, Taya M, Miller W (2013) Synergistic effect of hydrogen peroxide on polyploidization during the megakaryocytic differentiation of K562 leukemia cells by PMA. Exp Cell Res 319:2205–2215

    Article  CAS  Google Scholar 

  • Pang L, Weiss M, Poncz M (2005) Megakaryocyte biology and related disorders. J Clin Investig 115:3332–3338

    Article  CAS  Google Scholar 

  • Panuganti S, Schlinker A, Lindholm P, Papoutsakis E, Miller W (2013) Three-stage ex vivo expansion of high-ploidy megakaryocytic cells: toward large-scale platelet production. Tissue Eng Part A 19:998–1014

    Article  CAS  Google Scholar 

  • Pendaries C, Watson S, Spalton J (2007) Methods for genetic modification of megakaryocytes and platelets. Platelets 18:393–408

    Article  CAS  Google Scholar 

  • Pietrzyk-Nivau A, Poirault-Chassac S, Gandrille S, Derkaoui S, Kauskot A, Letourneur D, Le Visage C, Baruch D (2015) Three-dimensional environment sustains hematopoietic stem cell differentiation into platelet-producing megakaryocytes. PLoS One 10. doi:10.1371/journal.pone.0136652

  • Saito H (1997) Megakaryocytic cell lines. Baillieres Clin Haematol 10:47–63

    Article  CAS  Google Scholar 

  • Schlinker A, Radwanski K, Wegener C, Min K, Miller W (2015) Separation of in vitro-derived megakaryocytes and platelets using spinning-membrane filtration. Biotechnol Bioeng 112:788–800

    Article  CAS  Google Scholar 

  • Schweinfurth N, Hohmann S, Deuschle M, Lederbogen F, Schloss P (2010) Valproic acid and all trans retinoic acid differentially induce megakaryopoiesis and platelet-like particle formation from the megakaryoblastic cell line MEG-01. Platelets 21:648–657

    Article  CAS  Google Scholar 

  • Shin J, Swift J, Spinler K, Discher D (2011) Myosin-II inhibition and soft 2D matrix maximize multinucleation and cellular projections typical of platelet-producing megakaryocytes. Proc Natl Acad Sci USA 108:11458–11463

    Article  CAS  Google Scholar 

  • Slichter S (2006) Background, rationale, and design of a clinical trial to assess the effects of platelet dose on bleeding risk in thrombocytopenic patients. J Clin Apher 21:78–84

    Article  Google Scholar 

  • Takayama N, Nishimura S, Nakamura S, Shimizu T, Ohnishi R, Endo H, Yamaguchi T, Otsu M, Nishimura K, Nakanishi M, Sawaguchi A, Nagai R, Takahashi K, Yamanaka S, Nakauchi H, Eto K (2010) Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. J Exp Med 207:2817–2830

    Article  CAS  Google Scholar 

  • Takeuchi K, Ogura M, Saito H, Satoh M, Takeuchi M (1991) Production of platelet-like particles by a human megakaryoblastic leukemia cell line (MEG-01). Exp Cell Res 193:223–226

    Article  CAS  Google Scholar 

  • Tavassoli M (1980) Megakaryocyte-platelet axis and the process of platelet formation and release. Blood 55:537–545

    CAS  Google Scholar 

  • Teramura M, Kobayashi S, Hoshino S, Oshimi K, Mizoguchi H (1992) Interleukin-11 enhances human megakaryopoiesis in vitro. Blood 79:327–331

    CAS  Google Scholar 

  • Unger C, Skottman H, Blomberg P, Dilber M, Hovatta O (2008) Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet 17:R48–R53

    Article  CAS  Google Scholar 

  • van den Oudenrijn S, de Haas M, Calafat J, van der Schoot C, von dem Borne A (1999) A combination of megakaryocyte growth and development factor and interleukin-1 is sufficient to culture large numbers of megakaryocytic progenitors and megakaryocytes for transfusion purposes. Br J Haematol 106:553–563

    Article  Google Scholar 

  • van den Oudenrijn S, von dem Borne A, de Haas M (2000) Differences in megakaryocyte expansion potential between CD34+ stem cells derived from cord blood, peripheral blood, and bone marrow from adults and children. Exp Hematol 28:1054–1061

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant-in-Aids for Scientific Researches, No. 25289295, from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Retno Wahyu Nurhayati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurhayati, R.W., Ojima, Y. & Taya, M. Recent developments in ex vivo platelet production. Cytotechnology 68, 2211–2221 (2016). https://doi.org/10.1007/s10616-016-9963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-9963-4

Keywords

Navigation