, Volume 68, Issue 5, pp 2125–2138 | Cite as

Evaluation of electroporation-induced adverse effects on adipose-derived stem cell exosomes

  • Kasper Bendix Johnsen
  • Johann Mar Gudbergsson
  • Martin Najbjerg Skov
  • Gunna Christiansen
  • Leonid Gurevich
  • Torben Moos
  • Meg Duroux
Original Article


In the recent years, the possibility of utilizing extracellular vesicles for drug delivery purposes has been investigated in various models, suggesting that these vesicles may have such potential. In addition to the choice of donor cell type for vesicle production, a major obstacle still exists with respect of loading the extracellular vesicles efficiently with the drug of choice. One of the proposed solutions to this problem has been drug loading by electroporation, where small pores are created in the membrane of the extracellular vesicles, hereby allowing for free diffusion of the drug compound into the interior of the vesicle. We investigated the utility of adipose-derived stem cells (ASCs) as an efficient exosome donor cell type with a particular focus on the treatment of glioblastoma multiforme (GBM). In addition, we evaluated electroporation-induced effects on the ASC exosomes with respect to their endogenous potential of stimulating GBM proliferation, and morphological changes to single and multiple ASC exosomes. We found that electroporation does not change the endogenous stimulatory capacity of ASC exosomes on GBM cell proliferation, but mediates adverse morphological changes including aggregation of the exosomes. In order to address this issue, we have successfully optimized the use of a trehalose-containing buffer system as a way of maintaining the structural integrity of the exosomes.


Extracellular vesicles Exosomes Drug delivery Adipose-derived stem cells Electroporation Trehalose Glioblastoma multiforme 



Atomic force microscopy


Adipose-derived stem cells


Blood–brain barrier


Cluster of differentiation


Carboxyfluorescein succinimidyl ester


Conditioned medium


Electroporated exosomes


Endosomal sorting complex required for transport


Fetal calf serum


Glioblastoma multiforme




Messenger RNA


Mesenchymal stem cell


Multivesicular bodies


Nanoparticle tracking analysis


Polyethylene glycol




Phosphotungstic acid


Ribonucleic acid


Small interfering RNA


Transmission electron microscopy


Trehalose pulse medium





The authors would like to acknowledge laboratory technician Rikke Sophie Holm Kristensen, Aalborg University for her excellent technical assistance. Furthermore, Andreas Rasmussen, Laboratory of Stem Cell Research, Aalborg University is acknowledged for his kind help and facilitation of electroporation. This work was supported by Spar Nord Fonden. Kasper Bendix Johnsen is supported by the Novo Scholarship Programme (Novo Nordisk, Denmark).

Supplementary material

10616_2016_9952_MOESM1_ESM.pdf (692 kb)
Supplementary material 1 (PDF 692 kb)


  1. Alvarez-Erviti L, Seow Y, Yin H et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345. doi: 10.1038/nbt.1807 CrossRefGoogle Scholar
  2. Bryniarski K, Ptak W, Jayakumar A et al (2013) Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J Allergy Clin Immunol. doi: 10.1016/j.jaci.2013.04.048 Google Scholar
  3. Chen C, Han D, Cai C, Tang X (2010) An overview of liposome lyophilization and its future potential. J Control Release 142:299–311. doi: 10.1016/j.jconrel.2009.10.024 CrossRefGoogle Scholar
  4. Chen TS, Arslan F, Yin Y et al (2011) Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med 9:47. doi: 10.1186/1479-5876-9-47 CrossRefGoogle Scholar
  5. Crowe JH, Crowe LM (1988) Factors affecting the stability of dry liposomes. Biochim Biophys Acta 939:327–334CrossRefGoogle Scholar
  6. Crowe JH (2007) Trehalose as a “chemical chaperone”: fact and fantasy. Adv Exp Med Biol 594:143–158. doi: 10.1007/978-0-387-39975-1_13 CrossRefGoogle Scholar
  7. de Jong OG, Verhaar MC, Chen Y et al (2012) Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 1:569. doi: 10.3402/jev.v1i0.18396 Google Scholar
  8. El Andaloussi SE, Mäger I, Breakefield XO, Wood MJA (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. doi: 10.1038/nrd3978 Google Scholar
  9. Fuhrmann G, Serio A, Mazo M et al (2015) Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release 205:35–44. doi: 10.1016/j.jconrel.2014.11.029 CrossRefGoogle Scholar
  10. Gudbergsson JM, Johnsen KB, Skov MN, Duroux M (2015) Systematic review of factors influencing extracellular vesicle yield from cell cultures. Cytotechnology. doi: 10.1007/s10616-015-9913-6 Google Scholar
  11. Hood JL, Scott MJ, Wickline SA (2014) Maximizing exosome colloidal stability following electroporation. Anal Biochem 448:41–49. doi: 10.1016/j.ab.2013.12.001 CrossRefGoogle Scholar
  12. Johnsen KB, Gudbergsson JM, Skov MN et al (2014) A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta. doi: 10.1016/j.bbcan.2014.04.005 Google Scholar
  13. Kapla J, Wohlert J, Stevensson B et al (2013) Molecular dynamics simulations of membrane–sugar interactions. J Phys Chem B 117:6667–6673. doi: 10.1021/jp402385d CrossRefGoogle Scholar
  14. Kapla J, Engström O, Stevensson B et al (2015) Molecular dynamics simulations and NMR spectroscopy studies of trehalose–lipid bilayer systems. Phys Chem Chem Phys 17:22438–22447. doi: 10.1039/c5cp02472b CrossRefGoogle Scholar
  15. Katakowski M, Buller B, Zheng X et al (2013) Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 335:201–204. doi: 10.1016/j.canlet.2013.02.019 CrossRefGoogle Scholar
  16. Katsuda T, Tsuchiya R, Kosaka N et al (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197. doi: 10.1038/srep01197 CrossRefGoogle Scholar
  17. King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12:421. doi: 10.1186/1471-2407-12-421 CrossRefGoogle Scholar
  18. Kooijmans SAA, Stremersch S, Braeckmans K et al (2013) Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release. doi: 10.1016/j.jconrel.2013.08.014 Google Scholar
  19. Koster KL, Webb MS, Bryant G, Lynch DV (1994) Interactions between soluble sugars and POPC (1-palmitoyl-2-oleoylphosphatidylcholine) during dehydration: vitrification of sugars alters the phase behavior of the phospholipid. Biochim Biophys Acta 1193:143–150CrossRefGoogle Scholar
  20. Lee HK, Finniss S, Cazacu S et al (2013) Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget 4:346–361CrossRefGoogle Scholar
  21. Lin R, Wang S, Zhao RC (2013) Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem. doi: 10.1007/s11010-013-1746-z Google Scholar
  22. Lopatina T, Bruno S, Tetta C et al (2014) Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhance their angiogenic potential. Cell Commun Signal 12:26. doi: 10.1186/1478-811X-12-26 CrossRefGoogle Scholar
  23. Momen-Heravi F, Bala S, Bukong T, Szabo G (2014) Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomedicine. doi: 10.1016/j.nano.2014.03.014 Google Scholar
  24. Moser D, Zarka D, Hedman C, Kallas T (1995) Plasmid and chromosomal DNA recovery by electroextraction of cyanobacteria. FEMS Microbiol Lett 128:307–313CrossRefGoogle Scholar
  25. Munoz JL, Bliss SA, Greco SJ et al (2013) Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol Ther Nucleic Acids 2:e126. doi: 10.1038/mtna.2013.60 CrossRefGoogle Scholar
  26. Mussauer H, Sukhorukov VL, Zimmermann U (2001) Trehalose improves survival of electrotransfected mammalian cells. Cytometry 45:161–169. doi: 10.1002/1097-0320(20011101)45:3<161:AID-CYTO1159>3.0.CO;2-7 CrossRefGoogle Scholar
  27. Ohno S-I, Takanashi M, Sudo K et al (2012) Systemically injected exosomes targeted to EGFR deliver antitumor microrna to breast cancer cells. Mol Ther. doi: 10.1038/mt.2012.180 Google Scholar
  28. Pereira CS, Lins RD, Chandrasekhar I et al (2004) Interaction of the disaccharide trehalose with a phospholipid bilayer: a molecular dynamics study. Biophys J 86:2273–2285. doi: 10.1016/S0006-3495(04)74285-X CrossRefGoogle Scholar
  29. Pereira CS, Hünenberger PH (2006) Interaction of the sugars trehalose, maltose and glucose with a phospholipid bilayer: a comparative molecular dynamics study. J Phys Chem B 110:15572–15581. doi: 10.1021/jp060789l CrossRefGoogle Scholar
  30. Rasmussen JG, Frøbert O, Pilgaard L et al (2011) Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells. Cytotherapy 13:318–328. doi: 10.3109/14653249.2010.506505 CrossRefGoogle Scholar
  31. Shtam TA, Kovalev RA, Varfolomeeva EY et al (2013) Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 11:88. doi: 10.1186/1478-811X-11-88 CrossRefGoogle Scholar
  32. Smyth T, Kullberg M, Malik N et al (2015) Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J Control Release 199:145–155. doi: 10.1016/j.jconrel.2014.12.013 CrossRefGoogle Scholar
  33. Tian Y, Li S, Song J et al (2013) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. doi: 10.1016/j.biomaterials.2013.11.083 Google Scholar
  34. Villarreal MA, Díaz SB, Disalvo EA, Montich GG (2004) Molecular dynamics simulation study of the interaction of trehalose with lipid membranes. Langmuir 20:7844–7851. doi: 10.1021/la049485l CrossRefGoogle Scholar
  35. Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820:940–948. doi: 10.1016/j.bbagen.2012.03.017 CrossRefGoogle Scholar
  36. Wahlgren J, Karlson TDL, Brisslert M et al (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. doi: 10.1093/nar/gks463 Google Scholar
  37. Weaver JC (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–435CrossRefGoogle Scholar
  38. Witwer KW, Buzás EI, Bemis LT et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2:18389. doi: 10.1074/jbc.M111.277061 Google Scholar
  39. Yang S, Pilgaard L, Chase LG et al (2012) Defined xenogeneic-free and hypoxic environment provides superior conditions for long-term expansion of human adipose-derived stem cells. Tissue Eng Part C Methods 18:593–602. doi: 10.1089/ten.TEC.2011.0592 CrossRefGoogle Scholar
  40. Yeo RWY, Lai RC, Zhang B et al (2013) Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev 65:336–341. doi: 10.1016/j.addr.2012.07.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Kasper Bendix Johnsen
    • 1
    • 2
  • Johann Mar Gudbergsson
    • 1
  • Martin Najbjerg Skov
    • 1
  • Gunna Christiansen
    • 3
  • Leonid Gurevich
    • 4
  • Torben Moos
    • 2
  • Meg Duroux
    • 1
  1. 1.Laboratory for Cancer Biology, Institute of Health Science and TechnologyAalborg UniversityAalborg ØDenmark
  2. 2.Laboratory for Neurobiology, Institute of Health Science and TechnologyAalborg UniversityAalborg ØDenmark
  3. 3.Department of BiomedicineAarhus UniversityAarhusDenmark
  4. 4.Institute of Physics and NanotechnologyAalborg UniversityAalborg ØDenmark

Personalised recommendations