, Volume 68, Issue 5, pp 2027–2036 | Cite as

Genotoxicity and cytotoxicity of copper oxychloride in cultured human lymphocytes using cytogenetic and molecular tests

  • Suleyman Bayram
  • Ahmet Genc
  • Mehmet Buyukleyla
  • Eyyup Rencuzogullari
Original Article


The genotoxicity of copper oxychloride was investigated in human lymphocytes using chromosome aberration (CA) and micronucleus (MN) tests and the randomly amplified polymorphic DNA-polymerase chain reaction technique. The lymphocytes were treated with 3, 6, and 12 µg/mL of copper oxychloride for 24 and 48 h. Copper oxychloride increased CA and abnormal cells in a dose-dependent manner. The frequency of MN and micronucleated binuclear cells also increased at all concentrations and treatment periods. However, copper oxychloride cytotoxicity, observed through lower mitotic and nuclear division index, was significantly lower only at the higher concentrations (6 and 12 µg/mL). Copper oxychloride increased the polymorphic bands and decreased genomic template stability. In conclusion, in this study it was confirmed that copper oxychloride has genotoxic potential for human lymphocytes in vitro. Additionally, caution is advised for its use as a fungicide, because it may increase the risk of exposure through the food chain.


Copper oxychloride Genotoxicity Chromosome aberration Micronucleus RAPD-PCR 



This study was supported by the Adiyaman University Research Fund (Grant No. FEFBAP/2013-0001). The authors wish to thank Dr. Muhsin Aydin and Mr. Dado Čakalo for language advice and editing.

Compliance with ethical standards

Conflict of interest

The authors report no declaration of interest.


  1. Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA (2010) Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 396:578–583CrossRefGoogle Scholar
  2. Akhtar MJ, Kumar S, Alhadlaq SA, Alrokayan SA, Abu-Salah KM, Ahamed M (2013) Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicol Ind Health. doi: 10.1177/0748233713511512 Google Scholar
  3. Alarifi S, Ali D, Verma A, Alakhtani S, Ali BA (2013) Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int J Toxicol 32:296–307CrossRefGoogle Scholar
  4. Al-Assiuty AN, Khalil MA, Ismail AW, van Straalen NM, Ageba MF (2014) Effects of fungicides and biofungicides on population density and community structure of soil oribatid mites. Sci Total Environ 466–467:412–420CrossRefGoogle Scholar
  5. Albertini RJ, Anderson D, Douglas GR, Hagmar L, Hemminki K, Merlo F, Natarajan AT, Norppa H, Shuker DEG, Tice R, Waters MD, Aitio A (2000) IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. Mutat Res 463:111–172CrossRefGoogle Scholar
  6. Aras S, Beyaztas T, Cansaran-Duman D, Gokce-Gunduzer E (2011) Evaluation of genotoxicity of Pseudevernia furfuracea (L.) Zopf by RAPD analysis. Genet Mol Res 10:3760–3770CrossRefGoogle Scholar
  7. Armstrong MJ, Bean CL, Galloway SM (1992) A quantitative assessment of cytotoxicity associated with chromosomal aberration detection in Chinese hamster ovary cells. Mutat Res 265:45–60CrossRefGoogle Scholar
  8. Atienzar FA, Jha AN (2006) The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat Res 613:76–102CrossRefGoogle Scholar
  9. Atienzar FA, Cheung VV, Jha AN, Depledge MH (2001) Fitness parameters and DNA effects are sensitive indicators of copper-induced toxicity in Daphnia magna. Toxicol Sci 59:241–250CrossRefGoogle Scholar
  10. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475CrossRefGoogle Scholar
  11. Buyukleyla M, Rencuzogullari E (2009) The effects of thymol on sister chromatid exchange, chromosome aberration and micronucleus in human lymphocytes. Ecotoxicol Environ Saf 72:943–947CrossRefGoogle Scholar
  12. Chen TB, Wong JWC, Zhou HY, Wong MH (1997) Assessment of trace metal distribution and contamination in surface soils of Hong Kong. J Environ Pollut 96:61–68CrossRefGoogle Scholar
  13. Ciji PP, Bijoy Nandan S (2014) Toxicity of copper and zinc to Puntius parrah (Day, 1865). Mar Environ Res 93:38–46CrossRefGoogle Scholar
  14. Di Bucchianico S, Fabbrizi MR, Misra SK, Valsami-Jones E, Berhanu D, Reip P, Bergamaschi E, Migliore L (2013) Multiple cytotoxic and genotoxic effects induced in vitro by differently shaped copper oxide nanomaterials. Mutagenesis 28:287–299CrossRefGoogle Scholar
  15. El-Gendy KS, Radwan MA, Gad AF (2009) In vivo evaluation of oxidative stress biomarkers in the land snail, Theba pisana exposed to copper-based pesticides. Chemosphere 77:339–344CrossRefGoogle Scholar
  16. Evans HJ (1984) Human peripheral blood lymphocytes for the analysis of chromosome aberrations in mutagen tests. In: Kilbey BJ, Legator M, Nichols W, Ramel C (eds) Handbook of mutagenicity test procedures, 2nd edn. Elsevier Science Publishers BV, Amsterdam, pp 405–427CrossRefGoogle Scholar
  17. Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95CrossRefGoogle Scholar
  18. Galloway SM, Miller JE, Armstrong MJ, Bean CL, Skopek TR, Nichols WW (1998) DNA synthesis inhibition as an indirect mechanism of chromosome aberrations: comparison of DNA reactive and non-DNA-reactive clastogens. Mutat Res 400:169–186CrossRefGoogle Scholar
  19. Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414CrossRefGoogle Scholar
  20. Grażyna G, Agata K, Adam P, Tomasz L, Agata WC, Karolina D, Grzegorz C, Anna C (2014) Treatment with D-penicillamine or zinc sulphate affects copper metabolism and improves but not normalizes antioxidant capacity parameters in Wilson disease. Biometals 27:207–215CrossRefGoogle Scholar
  21. Gunay N, Yildirim C, Karcioglu O, Gunay NE, Yilmaz M, Usalan C, Kose A, Togun I (2006) A series of patients in the emergency department diagnosed with copper poisoning: recognition equals treatment. Tohoku J Exp Med 209:243–248CrossRefGoogle Scholar
  22. Gupta M, Sarin NB (2009) Heavy metal induced DNA changes in aquatic macrophytes: random amplified polymorphic DNA analysis and identification of sequence characterized amplified region marker. J Environ Sci 21:686–690CrossRefGoogle Scholar
  23. Gupta M, Sinha S, Chandra P (1996) Copper-induced toxicity in aquatic macrophyte, Hydrilla verticillata: effect of pH. Ecotoxicology 5:23–33CrossRefGoogle Scholar
  24. Helling B, Reinecke SA, Reinecke AJ (2000) Effects of the fungicide copper oxychloride on the growth and reproduction of Eisenia fetida (Oligochaeta). Ecotoxicol Environ Saf 46:108–116CrossRefGoogle Scholar
  25. Hillard CA, Armstrong MJ, Bradt CI, Hill RB, Greenwood SK, Galloway SM (1998) Chromosome aberrations in vitro related to cytotoxicity of non-mutagenic chemicals and metabolic poisons. Environ Mol Mutagen 31:316–326CrossRefGoogle Scholar
  26. Hloch O, Charvát J (2012) Acute copper poisoning by suicidal attempt. Vnitr Lek 58:25–328Google Scholar
  27. Hurwitz BM, Center SA, Randolph JF, McDonough SP, Warner KL, Hazelwood KS, Chiapella AM, Mazzei MJ, Leavey K, Acquaviva AE, Lindsay MM, Sanders L, Pintar J (2014) Presumed primary and secondary hepatic copper accumulation in cats. J Am Vet Med Assoc 244:68–77CrossRefGoogle Scholar
  28. Kirkland DJ, Muller L (2000) Interpretation of the biological relevance of genotoxicity test results: the importance of thresholds. Mutat Res 464:137–147CrossRefGoogle Scholar
  29. Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, Ishidate MJ, Kirchner S, Lorge E, Morita T, Norppa H, Surrallés J, Vanhauwaert A, Wakata A (2003) Report from the in vitro micronucleus assay working group. Mutat Res 540:153–163CrossRefGoogle Scholar
  30. Kocaman AY, Topaktaş M (2010) Genotoxic effects of a particular mixture of acetamiprid and alpha-cypermethrin on chromosome aberration, sister chromatid exchange, and micronucleus formation in human peripheral blood lymphocytes. Environ Toxicol 25:157–168Google Scholar
  31. Kocaman AY, Rencüzoğulları E, Topaktaş M, Istifli ES, Büyükleyla M (2011) The effects of 4-thujanol on chromosome aberrations, sister chromatid exchanges and micronucleus in human peripheral blood lymphocytes. Cytotechnology 63:493–502CrossRefGoogle Scholar
  32. Kocaman AY, Rencuzogullari E, Topaktas M (2014) In vitro investigation of the genotoxic and cytotoxic effects of thiacloprid in cultured human peripheral blood lymphocytes. Environ Toxicol 29:631–641CrossRefGoogle Scholar
  33. La Pera L, Dugo G, Rando R, Di Bella G, Maisano R, Salvo F (2008) Statistical study of the influence of fungicide treatments (mancozeb, zoxamide and copper oxychloride) on heavy metal concentrations in Sicilian red wine. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:302–313CrossRefGoogle Scholar
  34. Mace MLJ, Daskal Y, Wray W (1978) Scanning-electron microscopy of chromosome aberrations. Mutat Res 52:199–206CrossRefGoogle Scholar
  35. Madle S, Beek B, Nowak C (1993) Zum Verständnis von chromosomenmutationstests an somazellen. [The understanding of chromosome and somatic cell mutation test]. In: Fahrig R (ed) Mutationsforschung und genetische toxikologie [Mutation research and genetic toxicology]. Wissenschaftliche Buchgesellschaft, Darmstadt, pp 224–242Google Scholar
  36. Masaka J, Muunganirwa M (2007) The effects of copper oxy chloride waste contamination on selected soil biochemical properties at disposal site. Sci Total Environ 387:228–236CrossRefGoogle Scholar
  37. Matache ML, Marin C, Rozylowicz L, Tudorache A (2013) Plants accumulating heavy metals in the Danube river wetlands. J Environ Health Sci Eng 11:39CrossRefGoogle Scholar
  38. Norppa H, Falck GC (2003) What do human micronuclei contain? Mutagen 18:221–233CrossRefGoogle Scholar
  39. Paz-y-Miño C, Bustamante G, Sánchez ME, Leone PE (2002) Cytogenetic monitoring in a population occupationally exposed to pesticides in Ecuador. Environ Health Perspect 110:1077–1080CrossRefGoogle Scholar
  40. Pérez-Rodríguez P, Paradelo M, Rodríguez-Salgado I, Fernández-Calviño D, López-Periago JE (2013) Modeling the influence of raindrop size on the wash-off losses of copper-based fungicides sprayed on potato (Solanum tuberosum L.) leaves. J Environ Sci Health B 48:737–746CrossRefGoogle Scholar
  41. Pirtskhelani AG, Pirtskhelani NA, Gakhokidze RA, Bichikashvili NV, Kalandiia EA (2008) The influence of polyvitamin complex polijen on mutagenic and cytotoxic effect of copper oxychloride in white mice. Georgian Med News 159:44–47Google Scholar
  42. Pose E, Rial-Otero R, Paradelo M, López-Periago JE (2009) Influence of soil characteristics on copper sorption from a copper oxychloride fungicide. J Agric Food Chem 57:2843–2848CrossRefGoogle Scholar
  43. Rencuzogullari E, Ila HB, Kayraldiz A, Arslan M, Diler SB, Topaktas M (2004) The genotoxic effect of the new acaricide etoxazole. Genetika 40:1571–1575Google Scholar
  44. Sevindik N, Rencuzogullari E (2014) The genotoxic and antigenotoxic effects of Salvia fruticosa leaf extract in human blood lymphocytes. Drug Chem Toxicol 37:295–302CrossRefGoogle Scholar
  45. Shivanandappa T, Krishnakumari MK, Majumder SK (1983) Testicular atrophy in Gallus domesticus fed acute doses of copper fungicides. Poult Sci 62:405–408CrossRefGoogle Scholar
  46. Snyman RG, Reinecke AJ, Reinecke SA (2004) Changes in oocyte numbers in the ovotestis of Helix aspersa, after experimental exposure to the fungicide copper oxychloride. Bull Environ Contam Toxicol 73:398–403CrossRefGoogle Scholar
  47. Snyman RG, Reinecke AJ, Reinecke SA (2009) Quantitative changes in digestive gland cells and oocytes of Helix aspersa, as biomarkers of copper oxychloride exposure under field conditions. Bull Environ Contam Toxicol 83:19–22CrossRefGoogle Scholar
  48. Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Gupta DK (2006) Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. Aquat Toxicol 80:405–415CrossRefGoogle Scholar
  49. Suzuki KT, Someya A, Komada Y, Ogra Y (2002) Roles of metallothionein in copper homeostasis: responses to Cu-deficient diets in mice. J Inorg Biochem 88:173–182CrossRefGoogle Scholar
  50. Vock EH, Lutz WK, Hormes P, Hoffmann HD, Vamvakas S (1998) Discrimination between genotoxicity and cytotoxicity in the induction of DNA double-strand breaks in cells treated with etoposide, melphalan, cisplatin, potassium cyanide, Triton X-100 and c-irradiation. Mutat Res 413:83–94CrossRefGoogle Scholar
  51. Waheed S, Kamal A, Malik RN (2013) Human health risk from organ-specific accumulation of toxic metals and response of antioxidants in edible fish species from Chenab River, Pakistan. Environ Sci Pollut Res Int 21:4409–4417. doi: 10.1007/s11356-013-2385-311 CrossRefGoogle Scholar
  52. Wang Z, Li N, Zhao J, White JC, Qu P, Xing B (2012) CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25:1512–1521CrossRefGoogle Scholar
  53. WHO (1974) Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents. Seventeenth report of the Joint FAO/WHO Expert Committee on Food Additives, World Health Organization technical rep ser no. 539; FAO Nutrition Meetings Report Series, 53Google Scholar
  54. Woimant F, Trocello JM (2014) Disorders of heavy metals. Handb Clin Neurol 120:851–864CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Suleyman Bayram
    • 1
  • Ahmet Genc
    • 2
  • Mehmet Buyukleyla
    • 3
  • Eyyup Rencuzogullari
    • 4
  1. 1.Department of Nursing, Adiyaman School of HealthAdiyaman UniversityAdiyamanTurkey
  2. 2.Vocational School of Health ServicesAdiyaman UniversityAdiyamanTurkey
  3. 3.Department of Molecular Biology and Genetic, Faculty of Science and LettersAvrasya UniversityTrabzonTurkey
  4. 4.Department of Biology, Faculty of Science and LettersAdiyaman UniversityAdiyamanTurkey

Personalised recommendations