Skip to main content
Log in

Design of a cone-and-plate device for controlled realistic shear stress stimulation on endothelial cell monolayers

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Endothelial cells are constantly exposed to blood flow and the resulting frictional force, the wall shear stress, varies in magnitude and direction with time, depending on vasculature geometry. Previous studies have shown that the structure and function of endothelial cells, and ultimately of the vessel wall, are deeply affected by the nature of wall shear stress waveforms. To investigate the in vitro effects of these stimuli, we developed a compact, programmable, real-time operated system based on cone-and-plate geometry, that can be used within a standard cell incubator. To verify the capability to replicate realistic shear stress waveforms, we calculated both analytically and numerically to what extent the system is able to correctly deliver the stimuli defined by the user at plate level. Our results indicate that for radii greater than 25 mm, the shear stress is almost uniform and directly proportional to cone rotation velocity. We further established that using a threshold of 10 Hz of wall shear stress waveform frequency components, oscillating flow conditions can be reproduced on cell monolayer surface. Finally, we verified the capability of the system to perform long-term flow exposure experiments ensuring sterility and cell culture viability on human umbilical vein endothelial cells exposed to unidirectional and oscillating shear stress. In conclusion, the system we developed is a highly dynamic, easy to handle, and able to generate pulsatile and unsteady oscillating wall shear stress waveforms. This system can be used to investigate the effects of realistic stimulations on endothelial cells, similar to those exerted in vivo by blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ando J, Yamamoto K (2011) Effects of shear stress and stretch on endothelial function. Antioxid Redox Signal 15:1389–1403. doi:10.1089/ars.2010.3361

    Article  CAS  Google Scholar 

  • Blackman BR, Garcia-Cardena G, Gimbrone MA Jr (2002) A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J Biomech Eng 124:397–407. doi:10.1115/1.1486468

    Article  Google Scholar 

  • Boon RA, Leyen TA, Fontijn RD, Fledderus JO, Baggen JM, Volger OL, van Nieuw Amerongen GP, Horrevoets AJ (2010) KLF2-induced actin shear fibers control both alignment to flow and JNK signaling in vascular endothelium. Blood 115:2533–2542. doi:10.1182/blood-2009-06-228726

    Article  CAS  Google Scholar 

  • Buschmann MH, Dieterich P, Adams NA, Schnittler HJ (2005) Analysis of flow in a cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells. Biotechnol Bioeng 89:493–502. doi:10.1002/bit.20165

    Article  CAS  Google Scholar 

  • Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 49:2379–2393. doi:10.1016/j.jacc.2007.02.059

    Article  CAS  Google Scholar 

  • Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91:327–387. doi:10.1152/physrev.00047.2009

    Article  Google Scholar 

  • Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, García-Cardeña G, Gimbrone MA Jr (2004) Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci USA 101:14871–14876. doi:10.1073/pnas.0406073101

    Article  CAS  Google Scholar 

  • Davies PF, Civelek M, Fang Y, Fleming I (2013) The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovasc Res 99:315–327. doi:10.1093/cvr/cvt101

    Article  CAS  Google Scholar 

  • Ene-Iordache B, Remuzzi A (2012) Disturbed flow in radial-cephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of stenosis. Nephrol Dial Transplant 27:358–368. doi:10.1093/ndt/gfr342

    Article  Google Scholar 

  • Feaver RE, Gelfand BD, Blackman BR (2013) Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells. Nat Commun 4:1525. doi:10.1038/ncomms2530

    Article  Google Scholar 

  • Fitts MK, Pike DB, Anderson K, Shiu YT (2014) Hemodynamic Shear Stress and Endothelial Dysfunction in Hemodialysis Access. Open Urol Nephrol J 7:33–44. doi:10.2174/1874303X01407010033

    Article  Google Scholar 

  • Helmke BP (2005) Molecular Control of cytoskeletal mechanics by hemodynamic forces. Physiology 20:43–54. doi:10.1152/physiol.00040.2004

    Article  CAS  Google Scholar 

  • Himburg HA, Dowd SE, Friedman MH (2007) Frequency-dependent response of the vascular endothelium to pulsatile shear stress. Am J Physiol Heart Circ Physiol 293:H645–H653. doi:10.1152/ajpheart.01087.2006

    Article  CAS  Google Scholar 

  • Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756. doi:10.1172/JCI107470

    Article  CAS  Google Scholar 

  • Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042. doi:10.1001/jama.282.21.2035

    Article  CAS  Google Scholar 

  • OpenFOAM Team (2014) The OpenFOAM Foundation http://www.openfoam.org. Accessed 26 Jun 2015

  • Rajabi-Jagahrgh E, Krishnamoorthy MK, Wang Y, Choe A, Roy-Chaudhury P, Banerjee RK (2013) Influence of temporal variation in wall shear stress on intima-media thickening in arteriovenous fistulae. Semin Dial 26:511–519. doi:10.1111/sdi.12045

    Article  Google Scholar 

  • Remuzzi A, Ene-Iordache B (2013) Novel Paradigms for Dialysis Vascular Access: upstream Hemodynamics and Vascular Remodeling in Dialysis Access Stenosis. Clin J Am Soc Nephrol 8:2186–2193. doi:10.2215/CJN.03450413

    Article  Google Scholar 

  • Remuzzi A, Dewey CF Jr, Davies PF, Gimbrone MA Jr (1984) Orientation of endothelial cells in shear fields in vitro. Biorheology 21:617–630

    CAS  Google Scholar 

  • Rouleau L, Rossi J, Leask RL (2010) Concentration and time effects of dextran exposure on endothelial cell viability, attachment, and inflammatory marker expression in vitro. Ann Biomed Eng 38:1451–1462. doi:10.1007/s10439-010-9934-4

    Article  Google Scholar 

  • Sdougos HP, Bussolari SR, Dewey CF (1984) Secondary flow and turbolence in a cone and plate device. J Fluid Mech 138:379–404. doi:10.1017/S0022112084000161

    Article  Google Scholar 

  • Sucosky P, Padala M, Elhammali A, Balachandran K, Jo H, Yoganathan AP (2008) Design of an ex vivo culture system to investigate the effects of shear stress on cardiovascular tissue. J Biomech Eng 130:035001. doi:10.1115/1.2907753

    Article  Google Scholar 

  • Sui B, Gao PY, Lin Y, Jing L, Sun S, Qin H (2015) Hemodynamic parameters distribution of upstream, stenosis center, and downstream sides of plaques in carotid artery with different stenosis: a MRI and CFD study: a preliminary study. Acta Radiol 56:347–354. doi:10.1177/0284185114526713

    Article  Google Scholar 

  • Sutera SP, Nowak MD (1988) A programmable, computer-controlled cone-plate viscometer for the application of pulsatile shear stress to platelet suspension. Biorheology 25:449–459

    CAS  Google Scholar 

  • Tzima E, del Pozo MA, Shattil SJ, Chien S, Schwartz MA (2001) Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J 20:4639–4647. doi:10.1093/emboj/20.17.4639

    Article  CAS  Google Scholar 

  • van Thienen JV, Fledderus JO, Dekker RJ, Rohlena J, van Ijzendoorn GA, Kootstra NA, Pannekoek H, Horrevoets AJ (2006) Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovasc Res 72:231–240. doi:10.1016/j.cardiores.2006.07.008

    Article  Google Scholar 

  • White CR, Stevens HY, Haidekker M, Frangos JA (2005) Temporal gradients in shear, but not spatial gradients, stimulate ERK1/2 activation in human endothelial cells. Am J Physiol Heart Circ Physiol 289:H2350–H2355. doi:10.1152/ajpheart.01229.2004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Cariplo Foundation (Fondazione Cariplo, Milano, Italy) under the “I4BIO—Innovazione e Bioingegneria” Project. Marco Franzoni was the recipient of a research fellowship from the ARMR Foundation (Aiuti per la Ricerca sulle Malattie Rare, Bergamo, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Remuzzi.

Ethics declarations

Conflict of interest

All the authors have declared no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franzoni, M., Cattaneo, I., Ene-Iordache, B. et al. Design of a cone-and-plate device for controlled realistic shear stress stimulation on endothelial cell monolayers. Cytotechnology 68, 1885–1896 (2016). https://doi.org/10.1007/s10616-015-9941-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-015-9941-2

Keywords

Navigation