Skip to main content
Log in

A protocol for the isolation and cultivation of brown bear (Ursus arctos) adipocytes

  • Methods Paper
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Brown bears (Ursus arctos) exhibit hyperphagia each fall and can become obese in preparation for hibernation. They do this without displaying the physiological problems typically seen in obese humans, such as Type 2 diabetes and heart disease. The study of brown bear hibernation biology could therefore aid in the development of novel methods for combating metabolic diseases. To this end, we isolated mesenchymal stem cells from subcutaneous fat biopsies, and culture methods were developed to differentiate these into the adipogenic lineage. Biopsies were taken from 8 captive male (N = 6) and female (N = 2) brown bears, ages 2–12 years. Plastic adherent, fibroblast-like cells were proliferated and subsequently cryopreserved or differentiated. Differentiation conditions were optimized with respect to fetal bovine serum content and time spent in differentiation medium. Cultures were characterized through immunostaining, RT-qPCR, and Oil red O staining to quantify lipid accumulation. Adiponectin, leptin, and glycerol medium concentrations were also determined over the course of differentiation. The culturing protocol succeeded in generating hormone-sensitive lipase-expressing, lipid-producing white-type adipocytes (UCP1 negative). Serum concentration and time of exposure to differentiation medium were both positively related to lipid production. Cells cultured to low passage numbers retained similar lipid production and expression of lipid markers PLIN2 and FABP4. Ultimately, the protocols described here may be useful to biologists in the field investigating the health of wild bear populations and could potentially increase our understanding of metabolic disorders in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ailhaud G, Grimaldi P, Négrel R (1992) Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr 121:207–233

    Article  Google Scholar 

  • Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA (1994) Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135:798–800

    CAS  Google Scholar 

  • Craighead FC Jr, Craighead JJ (1972) Grizzly bear prehibernation and denning activities as determined by radiotracking. Wildl Monogr 32:1–35

    Google Scholar 

  • Dahle B, Zedrosser A, Swenson JE (2006) Correlates with body size and mass in yearling brown bears (Ursus arctos). J Zool 269:273–283

    Article  Google Scholar 

  • Dani C, Doglio A, Amri E, Bardon S, Fort P, Bertrand B, Grimaldi P, Ailhaud G (1989) Cloning and regulation of a mRNA specifically expressed in the preadipose state. J Biol Chem 264:10119–10125

    CAS  Google Scholar 

  • Dani C, Smith AG, Dessolin S, Leroy P, Staccini L, Villageois P, Darimont C, Ailhaud G (1997) Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci 110:1279–1285

    CAS  Google Scholar 

  • Davis WL, Goodman DB, Crawford LA, Cooper OJ, Matthews JL (1990) Hibernation activates glyoxylate cycle and gluconeogenesis in black bear brown adipose tissue. Biochim Biophys Acta 1051:276–278

    Article  CAS  Google Scholar 

  • Derocher A, Stirling I (1996) Aspects of survival in juvenile polar bears. Can J Zool 74:1246–1252

    Article  Google Scholar 

  • Deutsch MJ, Schriever SC, Roscher AA, Ensenauer R (2014) Digital image analysis approach for lipid droplet size quantitation of Oil red O-stained cultured cells. Anal Biochem 445:87–89

    Article  CAS  Google Scholar 

  • Dicker A, Aström G, Sjölin E, Hauner H, Arner P, van Harmelen V (2007) The influence of preadipocyte differentiation capacity on lipolysis in human mature adipocytes. Horm Metab Res 39:282–287

    Article  CAS  Google Scholar 

  • Dolinsky VW, Gilham D, Hatch GM, Agellon LB, Lehner R, Vance DE (2003) Regulation of triacylglycerol hydrolase expression by dietary fatty acids and peroxisomal proliferator-activated receptors. Biochim Biophys Acta 1635:20–28

    Article  CAS  Google Scholar 

  • Farley SD, Robbins CT (1995) Lactation, hibernation, and mass dynamics of American black bears and grizzly bears. Can J Zool 73:2216–2222

    Article  Google Scholar 

  • Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4:263–273

    Article  CAS  Google Scholar 

  • Fink T, Rasmussen JG, Emmersen J, Pilgaard L, Fahlman A, Brunberg S, Josefsson J, Arnemo JM, Zachar V, Swenson JE, Fröbert O (2011) Adipose-derived stem cells from the brown bear (Ursus arctos) spontaneously undergo chondrogenic and osteogenic differentiation in vitro. Stem Cell Res 7:89–95

    Article  CAS  Google Scholar 

  • Ghaffari S, Dougherty GJ, Eaves AC, Eaves CJ (1997) Diverse effects of anti-CD44 antibodies on the stromal cell-mediated support of normal but not leukaemic (CML) haemopoiesis in vitro. Br J Haematol 97:22–28

    Article  CAS  Google Scholar 

  • Green H, Meuth M (1974) An established pre-adipose cell line and its differentiation in culture. Cell 3:127–133

    Article  CAS  Google Scholar 

  • Haynesworth SE, Baber MA, Caplan AI (1992) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13:69–80

    Article  CAS  Google Scholar 

  • Hellgren EC (1998) Physiology of hibernation in bears. Ursus 10:467–477

    Google Scholar 

  • Hilderbrand GV, Jenkins SG, Schwartz CC, Hanley TA, Robbins CT (1999) Effect of seasonal differences in dietary meat intake on changes in body mass and composition in wild and captive brown bears. Can J Zool 77:1623–1630

    Article  Google Scholar 

  • Hill EM (2013) Seasonal changes in white adipose tissue in American black bears (Ursus americanus). Master of Science, University of Tennessee, Knoxville, TN

  • Hissa R, Hohtola E, Tuomala-Saramäki T, Laine T, Kallio H (1998) Seasonal changes in fatty acids and leptin contents in the plasma of the European brown bear (Ursus arctos arctos). Ann Zool Fenn 35:215–224

    Google Scholar 

  • Jones JD, Burnett P, Zollman P (1999) The glyoxylate cycle: does it function in the dormant or active bear? Comp Biochem Phys B 124:177–179

    Article  CAS  Google Scholar 

  • Kamine A, Shimozuru M, Shibata H, Tsubota T (2012a) Changes in blood glucose and insulin responses to intravenous glucose tolerance tests and blood biochemical values in adult female Japanese black bears (Ursus thibetanus japonicus). Jpn J Vet Res 60:5–13

    Google Scholar 

  • Kamine A, Shimozuru M, Shibata H, Tsubota T (2012b) Effects of intramuscular administration of tiletamine–zolazepam with and without sedative pretreatment on plasma and serum biochemical values and glucose tolerance test results in Japanese black bears (Ursus thibetanus japonicus). Am J Vet Res 73:1282–1289

    Article  CAS  Google Scholar 

  • Körner A, Wabitsch M, Seidel B, Fischer-Posovszky P, Berthold A, Stumvoll M, Blüher M, Kratzsch J, Kiess W (2005) Adiponectin expression in humans is dependent on differentiation of adipocytes and down regulated by humoral serum components. Biochem Biophys Res Commun 337:540–550

    Article  Google Scholar 

  • Lee MJ, Fried SK (2014) Chapter four—optimal protocol for the differentiation and metabolic analysis of human adipose stromal cells. In: MacDougald OA (ed) Methods in enzymology, methods of adipose tissue biology, part B. Elsevier, Oxford, pp 49–65

    Chapter  Google Scholar 

  • Lefterova MI, Lazar MA (2008) New developments in adipogenesis. Trends Endocrinol Metab 20:107–114

    Article  Google Scholar 

  • Lopez-Alfaro C, Robbins CT, Zedrosser A, Nielsen SE (2013) Energetics of hibernation and reproductive trade-offs in brown bears. Ecol Model 270:1–10

    Article  Google Scholar 

  • MacDougald OA, Hwang CS, Fan H, Lane MD (1995) Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proc Natl Acad Sci USA 92:9034–9037

    Article  CAS  Google Scholar 

  • Malnick SD, Knobler H (2006) The medical complications of obesity. QJM Int J Med 99:565–579

    Article  CAS  Google Scholar 

  • Margetic S, Gazzola C, Pegg GG, Hill RA (2002) Leptin: a review of its peripheral actions and interactions. Int J Obes 26:1407–1433

    Article  CAS  Google Scholar 

  • McKinney MA, Atwood T, Dietz R, Sonne C, Iverson SJ, Peacock E (2014) Validation of adipose lipid content as a body condition index for polar bears. Ecol Evol 4:516–527

    Article  Google Scholar 

  • Morrison RF, Farmer SR (2000) Hormonal signaling and transcriptional control of adipocyte differentiation. J Nutr 130:3116S–3121S

    CAS  Google Scholar 

  • Nelson RA (1973) Winter sleep in the black bear: a physiologic and metabolic marvel. Mayo Clin Proc 48:733–737

    CAS  Google Scholar 

  • Nelson OL, Robbins CT (2010) Cardiac function adaptations in hibernating grizzly bears (Ursus arctos horribilis). J Comp Physiol B 180:465–473

    Article  Google Scholar 

  • Nelson OL, Robbins CT (2015) Cardiovascular function in large to small hibernators: bears to ground squirrels. J Comp Physiol B 185:265–279

    Article  Google Scholar 

  • Nelson RA, Folk GE Jr, Pfeiffer EW, Craighead JJ, Jonkel CJ, Steiger DL (1983) Behavior, biochemistry, and hibernation in black, grizzly, and polar bears. Int C Bear 5:284–290

    Google Scholar 

  • Ntambi JM, Kim Y (2000) Adipocyte differention and gene expression. J Nutr 130:3122S–3126S

    CAS  Google Scholar 

  • Ozturk SS, Palsson BO (1991) Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 2. Effects of serum concentration, dissolved oxygen concentration, and medium pH in a batch reactor. Biotechnol Prog 7:481–494

    Article  CAS  Google Scholar 

  • Pagano AM, Peacock E (2013) Remote biopsy darting and marking of polar bears. Mar Mamm Sci 30:169–183

    Article  Google Scholar 

  • Pagès M, Calvignac S, Klein C, Paris M, Hughes S, Hänni C (2008) Combined analysis of fourteen nuclear genes refines the Ursidae phylogeny. Mol Phylogenet Evol 47:73–83

    Article  Google Scholar 

  • Palumbo PJ, Wellik DL, Bagley NA, Nelson RA (1983) Insulin and glucagon responses in the hibernating black bear. Int C Bear 5:291–296

    Google Scholar 

  • Pi-Sunyer FX (2002) The obesity epidemic: pathophysiology and consequences. Obes Res 10:97–104

    Article  Google Scholar 

  • Robbins CT, Ben-David M, Fortin JK, Nelson OL (2012a) Maternal conditions determines birth date and growth of newborn bear cubs. J Mammal 93:540–546

    Article  Google Scholar 

  • Robbins CT, Lopez-Alfaro C, Rode KD, Tøien Ø, Nelson OL (2012b) Hibernation and seasonal fasting in bears: the energetic costs and consequences for polar bears. J Mammal 93:1493–1503

    Article  Google Scholar 

  • Rodriguez AM, Elabd C, Amri EZ, Ailhaud G, Dani C (2005) The human adipose tissue is a source of multipotent stem cells. Biochimie 87:125–128

    Article  CAS  Google Scholar 

  • Schwartz CC, Miller SD, Haroldson MA (2003) Grizzly bear. In: Feldhamer GA, Thompson BC, Chapman JA (eds) Wild mammals of North America: biology, management, and conservation, 2nd edn. John Hopkins University Press, Baltimore, Maryland, pp 556–586

    Google Scholar 

  • Seidell JC, Halberstadt J (2015) The global burden of obesity and the challenges of prevention. Ann Nutr Metab 66:7–12

    Article  CAS  Google Scholar 

  • Sonoda E, Aoki S, Uchihashi K, Soejima H, Kanaji S, Izuhara K, Satoh S, Fujitani N, Sugihara H, Toda S (2008) A new organotypic culture of adipose tissue fragments maintains viable mature adipocytes for a long term, together with development of immature adipocytes and mesenchymal stem cell-like cells. Endocrinology 149:4794–4798

    Article  CAS  Google Scholar 

  • Sugihara H, Yonemitsu N, Toda S, Miyabara S, Funatsumaru S, Matsumoto T (1988) Unilocular fat cells in three-dimensional collagen gel matrix culture. J Lipid Res 29:691–697

    CAS  Google Scholar 

  • Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, Gortmaker ST (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet 378:804–814

    Article  Google Scholar 

  • Tøien Ø, Blake J, Edgar DM, Grahn DA, Heller HC, Barnes BM (2011) Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331:906–909

    Article  Google Scholar 

  • Tsubota T, Sato M, Okano T, Nakamura S, Asano M, Komatsu T, Shibata H, Saito M (2008) Annual changes in serum leptin concentration in the adult female Japanese black bear (Ursus thibetanus japonicus). J Vet Med Sci 70:1399–1403

    Article  CAS  Google Scholar 

  • Wang P, Walter RD, Bhat BG, Florant GL, Coleman RA (1997) Seasonal changes in enzymes of lipogenesis and triacylglycerol synthesis in the golden-mantled ground squirrel (Spermophilus lateralis). Comp Biochem Phys B 118:261–267

    Article  CAS  Google Scholar 

  • Ware JV, Nelson OL, Robbins CT, Jansen HT (2012) Temporal organization of activity in the brown bear (Ursus arctos): roles of circadian rhythms, light, and food entrainment. Am J Physiol Regul I 303:890–902

    Article  Google Scholar 

  • Welch AJ, Bedoya-Reina OC, Carretero-Paulet L, Miller W, Rode KD, Lindqvist C (2014) Polar bears exhibit genome-wide signatures of bioenergetic adaptation to life in the arctic environment. Genome Biol Evol 6:433–450

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by Amgen Inc., the Interagency Grizzly Bear Committee, the Raili Korkka Brown Bear Endowment, the Bear Research and Conservation Endowment, and a National Science Foundation Graduate Research Fellowship (KSR, 1347943). We thank the scientists at Washington State University’s Department of Integrative Physiology and Neuroscience including Jamie Gaber and Marina Savenkova for their mentorship and technical expertise. We also thank Danielle Rivet, Joy Erlenbach, and the other dedicated researchers at WSU’s Bear Research, Education, and Conservation Center for their assistance in data collection and captive bear care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Gehring.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

J. L. Gehring and K. S. Rigano have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gehring, J.L., Rigano, K.S., Evans Hutzenbiler, B.D. et al. A protocol for the isolation and cultivation of brown bear (Ursus arctos) adipocytes. Cytotechnology 68, 2177–2191 (2016). https://doi.org/10.1007/s10616-015-9937-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-015-9937-y

Keywords

Navigation