Skip to main content

Advertisement

Log in

Identification and characterization of transcriptional control region of the human beta 1,4-mannosyltransferase gene

  • JAACT Special Issue
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

All asparagine-linked glycans (N-glycans) on the eukaryotic glycoproteins are primarily derived from dolichol-linked oligosaccharides (DLO), synthesized on the rough endoplasmic reticulum membrane. We have previously reported cloning and identification of the human gene, HMT-1, which encodes chitobiosyldiphosphodolichol beta-mannosyltransferase (β1,4-MT) involved in the early assembly of DLO. Considering that N-glycosylation is one of the most ubiquitous post-translational modifications for many eukaryotic proteins, the HMT-1 could be postulated as one of the housekeeping genes, but its transcriptional regulation remains to be investigated. Here we screened a 1 kb region upstream from HMT-1 open reading frame (ORF) for transcriptionally regulatory sequences by using chloramphenicol acetyl transferase (CAT) assay, and found that the region from −33 to −1 positions might act in HMT-1 transcription at basal level and that the region from −200 to −42 should regulate its transcription either positively or negatively. In addition, results with CAT assays suggested the possibility that two GATA-1 motifs and an Sp1 motif within a 200 bp region upstream from HMT-1 ORF might significantly upregulate HMT-1 transcription. On the contrary, the observations obtained from site-directed mutational analyses revealed that an NF-1/AP-2 overlapping motif located at −148 to −134 positions should serve as a strong silencer. The control of the HMT-1 transcription by these motifs resided within the 200 bp region could partially explain the variation of expression level among various human tissues, suggesting availability and importance of this region for regulatory role in HMT-1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DLO:

Dolichol-linked oligosaccharide

MT:

Mannosyltransferase

rER:

Rough endoplasmic reticulum

β1,4-MT:

Beta 1,4-mannosyltransferase

HMT-1:

Human mannosyltransferase I

kb:

Kilo base pair

ORF:

Open reading frame

CAT:

Chloramphenicol acetyl transferase

GATA-1:

GATA-binding factor 1

Sp1:

Specificity protein 1

bp:

Base pair

NF-1:

Nuclear factor 1

AP-2:

Activating protein 2

Man:

Mannose

Dol:

Dolichol

GlcNAc:

N-Acetylglucosamine

UDP:

Uridine diphosphate

GDP:

Guanosine diphosphate

Glc:

Glucose

Dol-P:

Dolichyl phosphate

DPAGT1:

Dolichyl-phosphate (UDP-N-acetylglucosamine) N-acetylglucosaminephosphotransferase 1

GlcNAc-1-P:

N-Acetylglucosamine-1-phosphate

ALG1:

Asparagine-linked glycosylation 1

CDG-I:

Congenital disorder of glycosylation type I

α1,3/α1,6-MT:

Alpha 1,3/alpha 1,6-mannosyltransferase

α1,2-MT:

Alpha 1,2-mannosyltransferase

DMEM:

Dulbecco’s modified Eagle medium

RT-PCR:

Reverse transcription-polymerase chain reaction

G3PDH:

Glyceraldehyde 3-phosphate dehydrogenase

DEPC:

Diethylpyrocarbonate

PBS:

Phosphate buffered saline

EDTA:

Ethylenediaminetetraacetic acid

OD:

Optical density

ONPG:

Ortho-nitrophenyl-beta-d-galactopyranoside

TLC:

Thin layer chromatography

SE:

Standard error

USF:

Upstream stimulatory factor

AP-1:

Activating protein 1

AP-4:

Activating protein 4

Dex:

Dexamethasone

RSV:

Rous sarcoma virus

MMTV:

Mouse mammary tumor virus

LTR:

Long terminal repeat

Ets-1:

E-twenty-six-1

NF-kB:

Nuclear factor-kappa B

STAT5a:

Signal transducer and activator of transcription 5a

TCF-1:

Transcription factor 1

Alg7p:

Asparagine-linked glycosylation 7 protein

Alg14p:

Asparagine-linked glycosylation 14 protein

References

  • Adamowicz M, Chmielinska E, Kaluzny L, Bittner G, Sarnowska-Wroczynska I, Timal S, Morava E, Lehle L, Wevers RA, Lefeber DJ, Sykut-Cegielska J (2011) Clinical and biochemical characterization of the second CDGIJ (DPAGT1-CDG) patient. J Inherit Metab Dis 34:S181

    Article  Google Scholar 

  • Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833:2430–2437

    Article  CAS  Google Scholar 

  • Albright CF, Robbins PW (1990) The sequence and transcript heterogeneity of the yeast gene ALG1, an essential mannosyltransferase involved in N-glycosylation. J Biol Chem 265:7042–7049

    CAS  Google Scholar 

  • Basiri K, Belaya K, Liu WW, Maxwell S, Sedghi M, Beeson D (2013) Clinical features in a large Iranian family with a limb-girdle congenital myasthenic syndrome due to a mutation in DPAGT1. Neuromuscul Disord 23:469–472

    Article  Google Scholar 

  • Buczkowska A, Swiezewska A, Lefeber DJ (2015) Genetic defect in dolichol metabolism. J Inherit Metab Dis 38:157–169

    Article  CAS  Google Scholar 

  • Cantagrel V, Lefeber DJ (2011) From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases. J Inherit Metab Dis 34:859–867

    Article  CAS  Google Scholar 

  • Carrera IA, Matthijs G, Perez B, Cerdá CP (2012) DPAGT1-CDG: report of a patient with fetal hypokinesia phenotype. Am J Med Genet A 158A:2027–2030

    Article  Google Scholar 

  • Couto JR, Huffaker TC, Robbins PW (1984) Cloning and expression in Escherichia coli of a yeast mannosyltransferase from the asparagine-linked glycosylation pathway. J Biol Chem 259:378–382

    CAS  Google Scholar 

  • Cui Y, Narayanan CS, Zhou J, Kumar A (1998) Exon-I is involved in positive as well as negative regulation of human angiotensinogen gene expression. Gene 224:97–107

    Article  CAS  Google Scholar 

  • de Koning TJ, Toet M, Dorland L, de Vries LS, van den Berg IET, Duran M, Poll-The BT (1998) Recurrent nonimmune hydrops fetal is associated with carbohydrate-deficient glycoprotein syndrome. J Inherit Metab Dis 21:681–682

    Article  Google Scholar 

  • Dupré T, Vuillaumier-Barrot S, Chantret I, Yayé HS, Le Bizec C, Afenjar A, Altuzarra C, Barnérias C, Burglen L, de Lonlay P, Feillet F, Napuri S, Seta N, Moore SEH (2010) Guanosine diphosphate- mannose:GlcNAc2-PP-dolichol mannosyltransferase deficiency (congenital disorders of glycosylation type Ik): five new patients and seven novel mutations. J Med Genet 47:729–735

    Article  Google Scholar 

  • Eckert D, Buhl S, Weber S, Jäger R, Schorle H (2005) The AP-2 family of transcription factors. Genome Biol 6:246.1–246.8

    Article  Google Scholar 

  • Elbein AD (1984) Inhibitors of the biosynthesis and processing of N-linked oligosaccharides. CRC Crit Rev Biochem 16:21–49

    Article  CAS  Google Scholar 

  • Finlay-Schultz J, Canastar A, Short M, El Gazzar M, Coughlan C, Leonard S (2011) Transcriptional repression of the α7 nicotinic acetylcholine receptor subunit gene (CHRNA7) by activating protein-2α(AP-2α). J Biol Chem 286:42123–42132

    Article  CAS  Google Scholar 

  • Fischer KD, Haese A, Nowock J (1993) Cooperation of GATA-1 and Sp1 can result in synergistic transcriptional activation or interference. J Biol Chem 268:23915–23923

    CAS  Google Scholar 

  • Furusawa M, Taira T, Iguchi-Ariga SMM, Ariga H (2003) Molecular cloning of the mouse AMY-1 gene and identification of the synergistic activation of the AMY-1 promoter by GATA-1 and Sp1. Genomics 81:221–233

    Article  CAS  Google Scholar 

  • Gao X-D, Nishikawa A, Dean N (2004) Physical interactions between the Alg1, Alg2, and Alg11 mannosyltransferases of the endoplasmic reticulum. Glycobiology 14:559–570

    Article  CAS  Google Scholar 

  • Gronostajski RM (2000) Roles of the NFI/CTF gene family in transcription and development. Gene 249:31–45

    Article  CAS  Google Scholar 

  • Grubenmann CE, Frank CG, Hülsmeier AJ, Schollen E, Matthijs G, Mayatepek E, Berger EG, Aebi M, Hennet T (2004) Deficiency of the first mannosylation step in the N-glycosylation pathway causes congenital disorder of glycosylation type Ik. Hum Mol Genet 13:535–542

    Article  CAS  Google Scholar 

  • Haeuptle MA, Hennet T (2009) Congenital disorders of glycosylation: an update on defects affecting the biosynthesis of dolichol-linked oligosaccharides. Hum Mutat 30:1628–1641

    Article  CAS  Google Scholar 

  • Helander A, Stödberg T, Jaeken J, Matthijs G, Eriksson M, Eggertsen G (2013) Dolichol kinase deficiency (DOLK-CDG) with a purely neurological presentation caused by a novel mutation. Mol Genet Metab 110:342–344

    Article  CAS  Google Scholar 

  • Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369

    Article  CAS  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  CAS  Google Scholar 

  • Jaeken J (2010) Congenital disorders of glycosylation. Ann NY Acad Sci 1214:190–198

    Article  CAS  Google Scholar 

  • Jung P, Menssen A, Mayr D, Hermeking H (2008) AP4 encodes a c-MYC-inducible repressor of p21. Proc Natl Acad Sci USA 105:15046–15051

    Article  CAS  Google Scholar 

  • Kean EL, Wei Z, Anderson VE, Zhang N, Sayre LM (1999) Regulation of the biosynthesis of N-acetylglucosaminylpyrophosphoryldolichol, feedback and product inhibition. J Biol Chem 274:34072–34082

    Article  CAS  Google Scholar 

  • Kim MY, Jeong BC, Lee JH, Kee HJ, Kook H, Kim NS, Kim YH, Kim JK, Ahn KY, Kim KK (2006) A repressor complex, AP4 transcription factor and geminin, negatively regulates expression of target genes in nonneuronal cells. Proc Natl Acad Sci USA 103:13074–13079

    Article  CAS  Google Scholar 

  • Kranz C, Denecke J, Lehle L, Sohlbach K, Jeske S, Meinhardt F, Rossi R, Gudowius S, Marquardt T (2004) Congenital disorder of glycosylation type Ik (CDG-Ik): a defect of mannosyltransferase I. Am Hum Genet 74:545–551

    Article  CAS  Google Scholar 

  • Kranz C, Jungeblut C, Denecke J, Erlekotte A, Sohlback C, Debus V, Kehl HG, Harms E, Reith A, Reichel S, Grobe H, Hammersen G, Schwarzer U, Marquardt T (2007) A defect in dolichol phosphate biosynthesis causes a new inherited disorder with death in early infancy. Am J Hum Genet 80:433–440

    Article  CAS  Google Scholar 

  • Ku WC, Chiu SK, Chen YJ, Huang HH, Wu WG, Chen YJ (2009) Complementary quantitative proteomics reveals that transcription factor AP-4 mediates E-box-dependent complex formation for transcriptional repression of HDM2. Mol Cell Proteomics 8:2034–2050

    Article  CAS  Google Scholar 

  • Kukuruzinska MA, Bergh MLE, Jackson BJ (1987) Protein glycosylation in yeast. Ann Rev Biochem 56:915–944

    Article  CAS  Google Scholar 

  • Lennon K, Pretel R, Kesselheim R, te Heesen S, Kukuruzinska MA (1995) Proliferation-dependent differential regulation of dolichol pathway genes in Saccharomyces cerevisiae. Glycobiology 5:633–642

    Article  CAS  Google Scholar 

  • Lieu MT, Ng BG, Rush JS, Wood T, Basehore MJ, Hegde M, Chang RC, Abdenur JE, Freeze HH, Wang RY (2013) Severe, fatal multisystem manifestations in a patient with dolichol kinase-congenital disorder of glycosylation. Mol Genet Metab 110:484–489

    Article  CAS  Google Scholar 

  • Liu Y, Bernard HU, Apt D (1997) NFI-B3, a Novel transcriptional repressor of the nuclear factor I family, is generated by alternative RNA processing. J Biol Chem 272:10739–10745

    Article  CAS  Google Scholar 

  • Lu J, Takahashi T, Ohoka A, Nakajima K, Hashimoto R, Miura N, Tachikawa H, Gao X-D (2012) Alg14 organizes the formation of a multi-glycosyltransferase complex involved in initiation of lipid-linked oligosaccharide biosynthesis. Glycobiology 22:504–516

    Article  CAS  Google Scholar 

  • Ma SL, Tang NL, Tam CW, Lui VW, Lam LC, Chiu HF, Driver JA, Pastorino L, Lu KP (2012) A PIN1 polymorphism that prevents its suppression by AP4 associates with delayed onset of Alzheimer’s disease. Neurobiol Aging 33:804–813

    Article  CAS  Google Scholar 

  • Marek KW, Vijay IK, Marth JD (1999) A recessive deletion in the GlcNAc-1-phosphotransferase gene results in peri-implantation embryonic lethality. Glycobiology 9:1263–1271

    Article  CAS  Google Scholar 

  • Merika M, Orkin SH (1995) Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF. Mol Cell Biol 15:2437–2447

    Article  CAS  Google Scholar 

  • Mitchell DL, DiMario JX (2010) AP-2α suppresses skeletal myoblast proliferation and represses fibroblast growth factor receptor 1 promoter activity. Exp Cell Res 316:194–202

    Article  CAS  Google Scholar 

  • Morava E, Vodopiutz J, Lefeber DJ, Janecke AR, Schmidt WM, Lechner S, Item CB, Sykut- Cegielska J, Adamowicz M, Wierzba J, Zhang ZH, Mihalek I, Stockler S, Bodamer OA, Lehle L, Wevers RA (2012) Defining the phenotype in congenital disorder of glycosylation due to ALG1 mutations. Pediatrics 130:e1034–e1039

    Article  Google Scholar 

  • Noffz C, Keppler-Ross S, Dean N (2009) Hetero-oligomeric interactions between early glycosyltransferases of the dolichol cycle. Glycobiology 19:472–478

    Article  CAS  Google Scholar 

  • Regal L, van Hasselt PM, Foulquier F, Cuppen I, Prinsen HCMT, Jansen K, Keldermans L, De Meirleir L, Matthijs G, Jaeken J (2015) ALG11-CDG: three novel mutations and further characterization of the phenotype. Mol Genet Metab Rep 2:16–19

    Article  CAS  Google Scholar 

  • Rind N, Schmeiser V, Thiel C, Absmanner B, Lübbehusen J, Hocks J, Apeshiotis N, Wilichowski E, Lehle L, Körner C (2010) A severe human metabolic disease caused by deficiency of the endoplasmic mannosyltransferase hALG11 leads to congenital disorder of glycosylation-Ip. Hum Mol Genet 19:1413–1424

    Article  CAS  Google Scholar 

  • Rohlfing AK, Rust S, Reunert J, Tirre M, Du Chesne I, Wemhoff S, Meinhardt F, Hartmann H, Das AM, Marquardt T (2014) ALG1-CDG: a new case with early fatal outcome. Gene 534:345–351

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Schwarz F, Aebi M (2011) Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 21:576–582

    Article  CAS  Google Scholar 

  • Schwarz M, Thiel C, Lübbehusen J, Dorland B, de Koning T, von Figura K, Lehle L, Körner C (2004) Deficiency of GDP-Man:GlcNAc2-PP-dolichol mannosyltransferase causes congenital disorder of glycosylation type Ik. Am J Hum Genet 74:472–481

    Article  CAS  Google Scholar 

  • Sengupta PK, Bouchie MP, Kukuruzinska MA (2010) N-Glycosylation gene DPAGT1 is a target of the Wnt/β-catenin signaling pathway. J Biol Chem 285:31164–31173

    Article  CAS  Google Scholar 

  • Sengupta PK, Bouchie MP, Nita-Lazar M, Yang HY, Kukuruzinska MA (2013) Coordinate regulation of N-glycosylation gene DPAGT1, canonical Wnt signaling and E-cadherin adhesion. J Cell Sci 126:484–496

    Article  CAS  Google Scholar 

  • Snow TM, Woods CW, Woods AG (2012) Congenital disorder of glycosylation: a case presentation. Adv Neonatal Care 12:96–100

    Article  Google Scholar 

  • Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067

    Article  CAS  Google Scholar 

  • Takahashi T, Gao X-D (2012) Physical interactions among human glycosyltransferases involved in dolichol-linked oligosaccharide biosynthesis. Trends Glycosci Glycotechnol 24:65–77

    Article  CAS  Google Scholar 

  • Takahashi T, Honda R, Nishikawa Y (2000) Cloning of the human cDNA which can complement the defect of the yeast mannosyltransferase I-deficient mutant alg1. Glycobiology 10:321–327

    Article  CAS  Google Scholar 

  • Thiel C, Schwarz M, Peng J, Grzmil M, Hasilik M, Braulke T, Kohlschütter A, von Figura K, Lehle L, Körner C (2003) A new type of congenital disorders of glycosylation (CDG-Ii) provides new insights into the early steps of dolichol-linked oligosaccharide biosynthesis. J Biol Chem 278:22498–22505

    Article  CAS  Google Scholar 

  • Thiel C, Rind N, Popovici D, Hoffmann GF, Hanson K, Conway RL, Adamski CR, Butler E, Scanion R, Lambert M, Apeshiotis N, Thiel C, Matthijs G, Körner C (2012) Improved diagnostics lead to identification of three new patients with congenital disorder of glycosylation-Ip. Hum Mutat 33:485–487

    Article  CAS  Google Scholar 

  • Timal S, Hoischen A, Lehle L, Adamowicz M, Huijben K, Sykut-Cegielska J, Paprocka J, Jamroz E, van Spronsen FJ, Körner C, Gilissen C, Rodenburg RJ, Eidhof I, Van den Heuvel L, Thiel C, Wevers RA, Morava E, Veltman J, Lefeber DJ (2012) Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing. Hum Mol Genet 21:4151–4161

    Article  CAS  Google Scholar 

  • Varelas X, Bouchie MP, Kukuruzinska MA (2014) Protein N-glycosylation in oral cancer: dysregulated cellular networks among DPAGT1, E-cadherin adhesion and canonical Wnt signaling. Glycobiology 24:579–591

    Article  CAS  Google Scholar 

  • Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    Article  CAS  Google Scholar 

  • Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11

    Article  CAS  Google Scholar 

  • Wu X, Rush JS, Karaoglu D, Krasnewich D, Lubinsky MS, Waechter CJ, Gilmore R, Freeze HH (2003) Deficiency of UDP-GlcNAc:dolichol phosphate N-acetylglucosamine-1 phosphate transferase (DPAGT1) causes a novel congenital disorder of glycosylation type Ij. Hum Mutat 22:144–150

    Article  CAS  Google Scholar 

  • Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW, Su AI (2009) BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10:R130.1–R130.8

    Article  Google Scholar 

  • Würde AE, Reunert J, Rust S, Hertzberg C, Haverkämper S, Nürnberg G, Nürnberg P, Lehle L, Rossi R, Marquardt T (2012) Congenital disorder of glycosylation type Ij (CDG-Ij, DPAGT1-CDG): extending the clinical and molecular spectrum of a rare disease. Mol Genet Metab 105:634–641

    Article  Google Scholar 

  • Zhang XL, Qu XJ, Vijay IK (2003) STAT5a regulates the GlcNAc-1-phosphate transferase gene transcription and expression. Cell Physiol Biochem 13:85–92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Y. Nishikawa (Tokai University) for kindly advising us. This study was supported in part by the Grants-in-Aid for Scientific Research on Priority Area No. 12760066 from the Ministry of Education, Science, Sports and Culture of Japan, and the research-funds from School of Engineering at Tokai University in 2000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Takahashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, T., Nedachi, T., Etoh, T. et al. Identification and characterization of transcriptional control region of the human beta 1,4-mannosyltransferase gene. Cytotechnology 69, 417–434 (2017). https://doi.org/10.1007/s10616-015-9929-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-015-9929-y

Keywords

Navigation