Advertisement

Cytotechnology

, Volume 68, Issue 5, pp 2139–2143 | Cite as

Manool, a Salvia officinalis diterpene, induces selective cytotoxicity in cancer cells

  • Pollyanna Francielli de Oliveira
  • Carla Carolina Munari
  • Heloiza Diniz Nicolella
  • Rodrigo Cassio Sola Veneziani
  • Denise Crispim Tavares
Short Communication

Abstract

Manool, a diterpene isolated from Salvia officinalis, was evaluated by the XTT colorimetric assay for cytotoxicity and selectivity against different cancer cell lines: B16F10 (murine melanoma), MCF-7 (human breast adenocarcinoma), HeLa (human cervical adenocarcinoma), HepG2 (human hepatocellular carcinoma), and MO59J, U343 and U251 (human glioblastoma). A normal cell line (V79, Chinese hamster lung fibroblasts) was used to compare the selectivity of the test substance. Manool exhibited higher cytotoxic activity against HeLa (IC50 = 6.7 ± 1.1 µg/mL) and U343 (IC50 = 6.7 ± 1.2 µg/mL) cells. In addition, in the used experimental protocols, the treatment with manool was significantly more cytotoxic for different tumor cell lines than for the normal cell line V79 (IC50 = 49.3 ± 3.3 µg/mL), and showed high selectivity. These results suggest that manool may be used to treat cancer without affecting normal cells.

Keywords

Manool Salvia officinalis Cancer cells Cytotoxicity Selectivity 

Notes

Acknowledgments

The authors would like to thank the São Paulo Research Foundation (FAPESP, Grant # 2011/21310-2), Brazil.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. Badiee P, Nasirzadeh AR, Motaffaf M (2012) Comparison of Salvia officinalis L. essential oil and antifungal agents against Candida species. J Pharm Technol Drug Res 1:7. doi: 10.7243/2050-120X-1-7 CrossRefGoogle Scholar
  2. Bastard J, Duc DK, Fetizon M, Francis MJ, Grant PK, Weavers RT, Kaneko C, Baddeley GV, Bernassau JM, Burfitt IR, Wovkulich PM, Wenkert E (1984) C-13 nuclear magnetic-resonance spectroscopy of naturally-occurring substances.81. Cmr spectroscopy of labdane diterpenes and related substances. J Nat Prod 47:592–599CrossRefGoogle Scholar
  3. Bradley MO, Bhuyan B, Francis MC, Langenbach R, Peterson A, Huberman E (1981) Mutagenesis by chemical agents in V79 Chinese hamster cells: a review and analysis of the literature. A report of the Gene-Tox program. Mutat Res 87:81–142CrossRefGoogle Scholar
  4. Farhat MB, Jordán MJ, Chaouech-Hamada R, Landoulsi A, Sotomayor JA (2009) Variations in essential oil, phenolic compounds, and antioxidant activity of Tunisian cultivated Salvia officinalis L. J Agric Food Chem 57:10349–10356CrossRefGoogle Scholar
  5. Gragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043CrossRefGoogle Scholar
  6. Kumrit I, Suksamrarn A, Meepawpan P, Songsri S, Nuntawong N (2010) Labdane-type diterpenes from Hedychium gardnerianum with potent cytotoxicity against human small cell lung cancer cells. Phytother Res 24:1009–1013Google Scholar
  7. Munari CC, Oliveira PF, Campos JC, Martins SP, Costa JC, Bastos JK, Tavares DC (2014) Antiproliferative activity of Solanum lycocarpum alkaloidic extract and their constituents, solamargine and solasonine, in tumor cell lines. J Nat Med 68:236–241CrossRefGoogle Scholar
  8. Nussbaumer S, Bonnabry P, Veuthey JL, Fleury-Souverain S (2011) Analysis of anticancer drugs: a review. Talanta 85:2265–2289CrossRefGoogle Scholar
  9. Pelletier SW, Chokshi HP, Desai HK (1986) Separation of diterpenoid alkaloid mixtures using vacuum liquid chromatography. J Nat Prod 49:892–900CrossRefGoogle Scholar
  10. Pratsinis H, Kletsas D, Melliou E, Chinou I (2010) Antiproliferative activity of Greek propolis. J Med Food 13:286–290CrossRefGoogle Scholar
  11. Riedl S, Zweytick D, Lohner K (2011) Membrane-active host defense peptides—Challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids 164:766–781CrossRefGoogle Scholar
  12. Souza AB, de Souza MGM, Moreira MA, Moreira MR, Furtado NAJC, Martins CHG, Bastos JK, dos Santos RA, Heleno VCG, Ambrosio SR, Veneziani RCS (2011) Antimicrobial evaluation of diterpenes from Copaifera langsdorffii oleoresin against periodontal anaerobic bacteria. Molecules 16:9611–9619CrossRefGoogle Scholar
  13. Suffness M, Pezzuto JM (1990) Assays related to cancer drug discovery. In: Hostettmann K (ed) Methods in plant biochemistry: assay for bioactivity. Academic Press, London, pp 71–133Google Scholar
  14. Ulubelen A, Topcu G, Eri C, Sonmez U, Kartal M, Kurucu, Bozok-Johansson C (1994) Terpenoids from Salvia sclarea. Phytochemistry 36:971–974CrossRefGoogle Scholar
  15. Ulubelen A, Sonmez U, Topcu G (1997) Diterpenoids from the roots of Salvia sclarea. Phytochemistry 44:1297–1299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Pollyanna Francielli de Oliveira
    • 1
  • Carla Carolina Munari
    • 1
  • Heloiza Diniz Nicolella
    • 1
  • Rodrigo Cassio Sola Veneziani
    • 1
  • Denise Crispim Tavares
    • 1
  1. 1.Universidade de FrancaFrancaBrazil

Personalised recommendations