Advertisement

Cytotechnology

, Volume 68, Issue 5, pp 1705–1715 | Cite as

A novel in vitro model of sarcopenia using BubR1 hypomorphic C2C12 myoblasts

  • Takateru Nozaki
  • Shiori Nikai
  • Ryo Okabe
  • Kiyoko Nagahama
  • Nozomu Eto
Original Article

Abstract

Sarcopenia is the age-related loss of skeletal muscle mass and function with adverse outcomes that include physical disability, poor quality of life, and death. The detailed molecular mechanisms remain unknown. An in vitro muscle atrophy model is needed to enable mechanistic studies. To create such a model, we employed BubR1 insufficiency which causes premature ageing in mice. Using C2C12 cells, a recognized in vitro model of the skeletal muscle cell, we obtained the BubR1 hypomorphic C2C12 (C2C12BKD) cells by using shRNA. The resulting C2C12BKD cells displayed several characteristics of the sarcopenic muscle cell. In C2C12BKD cells, formation of myotubes, assessed by analysis of fusion index, was markedly reduced as was the expression of myogenin and MyoD, two marker genes for myogenesis. Moreover, the cells showed increased expression of the muscle-specific ubiquitin ligases Atrogin-1 and MuRF-1, indicating increased protein degradation through the ubiquitin–proteasome dependent proteolytic pathway. These results suggest that C2C12BKD cells are potentially useful as a novel in vitro model of sarcopenia.

Keywords

Sarcopenia BubR1 hypomorphic C2C12 Myogenic differentiation Muscle-specific ubiquitin ligases 

Notes

Acknowledgments

We thank Dr. Tomoya Kono for his expertise in qRT-PCR. We also thank Dr. Tomonori Nakanishi and Dr. Masao Yamasaki for helpful discussions.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

10616_2015_9920_MOESM1_ESM.docx (2.8 mb)
Supplementary material 1 Bright-field images of SA-β-galactosidase activity. Cells were seeded at equivalent densities (3.0×105 cells per dish) onto 35-mm dishes (107.7 PDL). After 24 hr, cells were stained for SA-β-galactosidase as described in Materials and methods. Neither cell exhibited positive staining. The size of the scale bar is 100 μm(DOCX 2873 kb)

References

  1. Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P, van Deursen JM (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 36:744–749. doi: 10.1038/ng1382 CrossRefGoogle Scholar
  2. Baker DJ, Perez-Terzic C, Jin F, Pitel KS, Pitel K, Niederländer NJ, Jeganathan K, Yamada S, Reyes S, Rowe L, Hiddinga HJ, Eberhardt NL, Terzic A, van Deursen JM (2008) Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat Cell Biol 10:825–836. doi: 10.1038/ncb1744 CrossRefGoogle Scholar
  3. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236. doi: 10.1038/nature10600 CrossRefGoogle Scholar
  4. Baker DJ, Weaver RL, van Deursen JM (2013) p21 both attenuates and drives senescence and aging in BubR1 progeroid mice. Cell Rep 3:1164–1174. doi: 10.1016/j.celrep.2013.03.028 CrossRefGoogle Scholar
  5. Böcker W, Yin Z, Drosse I, Haasters F, Rossmann O, Wierer M, Popov C, Locher M, Mutschler W, Docheva D, Schieker M (2008) Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer. J Cell Mol Med 12:1347–1359. doi: 10.1111/j.1582-4934.2008.00299.x CrossRefGoogle Scholar
  6. Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6:25–39. doi: 10.1242/dmm.010389 CrossRefGoogle Scholar
  7. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740. doi: 10.1038/nrm2233 CrossRefGoogle Scholar
  8. Caron AZ, Haroun S, Leblanc E, Trensz F, Guindi C, Amrani A, Grenier G (2011) The proteasome inhibitor MG132 reduces immobilization-induced skeletal muscle atrophy in mice. BMC Musculoskelet Disord 12:185. doi: 10.1186/1471-2474-12-185 CrossRefGoogle Scholar
  9. Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130:223–233. doi: 10.1016/j.cell.2007.07.003 CrossRefGoogle Scholar
  10. De Larichaudy J, Zufferli A, Serra F, Isidori AM, Naro F, Dessalle K, Desgeorges M, Piraud M, Cheillan D, Vidal H, Lefai E, Némoz G (2012) TNF-α- and tumor-induced skeletal muscle atrophy involves sphingolipid metabolism. Skelet Muscle 2:2. doi: 10.1186/2044-5040-2-2 CrossRefGoogle Scholar
  11. Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806. doi: 10.1038/nprot.2009.191 CrossRefGoogle Scholar
  12. Dupont-Versteegden EE (2006) Apoptosis in skeletal muscle and its relevance to atrophy. World J Gastroenterol 12:7463–7466CrossRefGoogle Scholar
  13. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, Cederholm T, Chandler J, De Meynard C, Donini L, Harris T, Kannt A, Keime Guibert F, Onder G, Papanicolaou D, Rolland Y, Rooks D, Sieber C, Souhami E, Verlaan S, Zamboni M (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12:249–256. doi: 10.1016/j.jamda.2011.01.003 CrossRefGoogle Scholar
  14. Greising SM, Mantilla CB, Gorman BA, Ermilov LG, Sieck GC (2013) Diaphragm muscle sarcopenia in aging mice. Exp Gerontol 48:881–887. doi: 10.1016/j.exger.2013.06.001 CrossRefGoogle Scholar
  15. Gumucio JP, Mendias CL (2013) Atrogin-1, MuRF-1, and sarcopenia. Endocrine 43:12–21. doi: 10.1007/s12020-012-9751-7 CrossRefGoogle Scholar
  16. Hemdan DI, Hirasaka K, Nakao R, Kohno S, Kagawa S, Abe T, Harada-Sukeno A, Okumura Y, Nakaya Y, Terao J, Nikawa T (2009) Polyphenols prevent clinorotation-induced expression of atrogenes in mouse C2C12 skeletal myotubes. J Med Invest 56:26–32CrossRefGoogle Scholar
  17. Jadhav KS, Dungan CM, Williamson DL (2013) Metformin limits ceramide-induced senescence in C2C12 myoblasts. Mech Ageing Dev 134:548–559. doi: 10.1016/j.mad.2013.11.002 CrossRefGoogle Scholar
  18. Kamel HK (2003) Sarcopenia and aging. Nutr Rev 61:157–167CrossRefGoogle Scholar
  19. Konagaya M, Bernard PA, Max SR (1986) Blockade of glucocorticoid receptor binding and inhibition of dexamethasone-induced muscle atrophy in the rat by RU38486, a potent glucocorticoid antagonist. Endocrinology 119:375–380. doi: 10.1210/endo-119-1-375 CrossRefGoogle Scholar
  20. Langen RC, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM (2001) Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-kappaB. FASEB J 15:1169–1180CrossRefGoogle Scholar
  21. Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277:49831–49840. doi: 10.1074/jbc.M204291200 CrossRefGoogle Scholar
  22. Ma JF, Hall DT, Gallouzi IE (2012) The impact of mRNA turnover and translation on age-related muscle loss. Ageing Res Rev 11:432–441. doi: 10.1016/j.arr.2012.05.004 CrossRefGoogle Scholar
  23. Nakajima N, Takahashi T, Kitamura R, Isodono K, Asada S, Ueyama T, Matsubara H, Oh H (2006) MicroRNA-1 facilitates skeletal myogenic differentiation without affecting osteoblastic and adipogenic differentiation. Biochem Biophys Res Commun 350:1006–1012. doi: 10.1016/j.bbrc.2006.09.153 CrossRefGoogle Scholar
  24. Noh KK, Chung KW, Choi YJ, Park MH, Jang EJ, Park CH, Yoon C, Kim ND, Kim MK, Chung HY (2014) β-Hydroxy β-methylbutyrate improves dexamethasone-induced muscle atrophy by modulating the muscle degradation pathway in SD rat. PLoS ONE 9:e102947. doi: 10.1371/journal.pone.0102947 CrossRefGoogle Scholar
  25. Perry RL, Rudnick MA (2000) Molecular mechanisms regulating myogenic determination and differentiation. Front Biosci 5:D750–D767CrossRefGoogle Scholar
  26. Salama R, Sadaie M, Hoare M, Narita M (2014) Cellular senescence and its effector programs. Genes Dev 28:99–114. doi: 10.1101/gad.235184.113 CrossRefGoogle Scholar
  27. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412CrossRefGoogle Scholar
  28. Schaap LA, Pluijm SM, Deeg DJ, Harris TB, Kritchevsky SB, Newman AB, Colbert LH, Pahor M, Rubin SM, Tylavsky FA, Visser M, Study HA (2009) Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength. J Gerontol A Biol Sci Med Sci 64:1183–1189. doi: 10.1093/gerona/glp097 CrossRefGoogle Scholar
  29. Schmitz-Peiffer C, Craig DL, Biden TJ (1999) Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem 274:24202–24210CrossRefGoogle Scholar
  30. Sharples AP, Al-Shanti N, Stewart CE (2010) C2 and C2C12 murine skeletal myoblast models of atrophic and hypertrophic potential: relevance to disease and ageing? J Cell Physiol 225:240–250. doi: 10.1002/jcp.22252 CrossRefGoogle Scholar
  31. Shen H, Liu T, Fu L, Zhao S, Fan B, Cao J, Li X (2013) Identification of microRNAs involved in dexamethasone-induced muscle atrophy. Mol Cell Biochem 381:105–113. doi: 10.1007/s11010-013-1692-9 CrossRefGoogle Scholar
  32. Sousa-Victor P, Gutarra S, García-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V, Jardí M, Ballestar E, González S, Serrano AL, Perdiguero E, Muñoz-Cánoves P (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506:316–321. doi: 10.1038/nature13013 CrossRefGoogle Scholar
  33. Strle K, Broussard SR, McCusker RH, Shen WH, Johnson RW, Freund GG, Dantzer R, Kelley KW (2004) Proinflammatory cytokine impairment of insulin-like growth factor I-induced protein synthesis in skeletal muscle myoblasts requires ceramide. Endocrinology 145:4592–4602. doi: 10.1210/en.2003-1749 CrossRefGoogle Scholar
  34. te Pas MF, de Jong PR, Verburg FJ (2000) Glucocorticoid inhibition of C2C12 proliferation rate and differentiation capacity in relation to mRNA levels of the MRF gene family. Mol Biol Rep 27:87–98CrossRefGoogle Scholar
  35. Thomas DR (2007) Loss of skeletal muscle mass in aging: examining the relationship of starvation, sarcopenia and cachexia. Clin Nutr 26:389–399. doi: 10.1016/j.clnu.2007.03.008 CrossRefGoogle Scholar
  36. Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP, Leibovitch SA (2005) Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem 280:2847–2856. doi: 10.1074/jbc.M411346200 CrossRefGoogle Scholar
  37. Vandewoude MF, Alish CJ, Sauer AC, Hegazi RA (2012) Malnutrition-sarcopenia syndrome: is this the future of nutrition screening and assessment for older adults? J Aging Res 2012:651570. doi: 10.1155/2012/651570 CrossRefGoogle Scholar
  38. Wang DT, Yin Y, Yang YJ, Lv PJ, Shi Y, Lu L, Wei LB (2014) Resveratrol prevents TNF-α-induced muscle atrophy via regulation of Akt/mTOR/FoxO1 signaling in C2C12 myotubes. Int Immunopharmacol 19:206–213. doi: 10.1016/j.intimp.2014.02.002 CrossRefGoogle Scholar
  39. Yaffe D, Saxel O (1977a) A myogenic cell line with altered serum requirements for differentiation. Differentiation 7:159–166CrossRefGoogle Scholar
  40. Yaffe D, Saxel O (1977b) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Takateru Nozaki
    • 1
  • Shiori Nikai
    • 1
  • Ryo Okabe
    • 1
  • Kiyoko Nagahama
    • 2
  • Nozomu Eto
    • 1
    • 2
  1. 1.Department of Biochemistry and Applied Biosciences, Faculty of AgricultureUniversity of MiyazakiMiyazakiJapan
  2. 2.Interdisciplinary Graduate School of Agriculture and EngineeringUniversity of MiyazakiMiyazakiJapan

Personalised recommendations