, Volume 68, Issue 4, pp 1435–1445 | Cite as

Immortalization of pig fibroblast cells by transposon-mediated ectopic expression of porcine telomerase reverse transcriptase

  • Shan He
  • Yangyang Li
  • Yang Chen
  • Yue Zhu
  • Xinyu Zhang
  • Xiaoli Xia
  • Huaichang Sun
Original Article


Pigs are the most economically important livestock, but pig cell lines useful for physiological studies and/or vaccine development are limited. Although several pig cell lines have been generated by oncogene transformation or human telomerase reverse transcriptase (TERT) immortalization, these cell lines contain viral sequences and/or antibiotic resistance genes. In this study, we established a new method for generating pig cell lines using the Sleeping Beauty (SB) transposon-mediated ectopic expression of porcine telomerase reverse transcriptase (pTERT). The performance of the new method was confirmed by generating a pig fibroblast cell (PFC) line. After transfection of primary PFCs with the SB transposon system, one cell clone containing the pTERT expression cassette was selected by dilution cloning and passed for different generations. After passage for more than 40 generations, the cell line retained stable expression of ectopic pTERT and continuous growth potential. Further characterization showed that the cell line kept the fibroblast morphology, growth curve, population doubling time, cloning efficiency, marker gene expression pattern, cell cycle distribution and anchorage-dependent growth property of the primary cells. These data suggest that the new method established is useful for generating pig cell lines without viral sequence and antibiotic resistant gene.


Porcine telomerase reverse transcriptase Transposon vector Pig fibroblast cell line 



This work was supported by R & D Special Fund (1251012923) from the Ministry of Agriculture, China, and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Compliance with ethical standards

Conflict of interest

There is no conflict interest in this manuscript.


  1. Akagi T, Sasai K, Hanafusa H (2003) Refractory nature of normal human diploid fibroblasts with respect to oncogene-mediated transformation. Proc Natl Acad Sci USA 100:13567–13572CrossRefGoogle Scholar
  2. Belay E, Dastidar S, Vanden-Driessche T, Chuah MK (2011) Transposon-mediated gene transfer into adult and induced pluripotent stem cells. Curr Gene Ther 11:406–413CrossRefGoogle Scholar
  3. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352CrossRefGoogle Scholar
  4. Cao H, Chu Y, Zhu H, Sun J, Pu Y, Gao Z, Yang C, Peng S, Dou Z, Hua J (2011) Characterization of immortalized mesenchymal stem cells derived from foetal porcine pancreas. Cell Prolif 44:19–32CrossRefGoogle Scholar
  5. Chang MW, Grillari J, Mayrhofer C, Fortschegger K, Allmaier G, Marzban G, Katinger H, Voglauer R (2005) Comparison of early passage, senescent and hTERT immortalized endothelial cells. Exp Cell Res 309:121–136CrossRefGoogle Scholar
  6. Dickson MA, Hahn WC, Ino Y, Ronfard V, Wu JY, Weinberg RA, Louis DN, Li FP, Rheinwald JG (2000) Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol 20:1436–1447CrossRefGoogle Scholar
  7. Donai K, Kiyono T, Eitsuka T, Guo Y, Kuroda K, Sone H, Isogai E, Fukuda T (2014) Bovine and porcine fibroblasts can be immortalized with intact karyotype by the expression of mutant cyclin dependent kinase 4, cyclin D, and telomerase. J Biotechnol 176:50–57CrossRefGoogle Scholar
  8. Freshney RI (2010) Culture of animal cells: a manual of basic technique and specialized applications, 6th edn. Wiley-Blackwell, New Jersey, pp 208–211CrossRefGoogle Scholar
  9. Gomes NM, Ryder OA, Houck ML, Charter SJ, Walker W, Forsyth NR, Austad SN, Venditti C, Pagel M, Shay JW, Wright WE (2011) Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles oftelomeres in longevity determination. Aging Cell 10:761–768CrossRefGoogle Scholar
  10. Haga K, Ohno S, Yugawa T, Narisawa-Saito M, Fujita M, Sakamoto M, Galloway DA, Kiyono T (2007) Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT. Cancer Sci 98:147–154CrossRefGoogle Scholar
  11. Hang H, Fox MH (2004) Analysis of the mammalian cell cycle by flow cytometry. Methods Mol Biol 241:23–35Google Scholar
  12. Herbert BS, Wright WE, Shay JW (2002) p16(INK4a) inactivation is not required to immortalize human mammary epithelial cells. Oncogene 21:7897–7900CrossRefGoogle Scholar
  13. Hong HX, Zhang YM, Xu H, Su ZY, Sun P (2007) Immortalization of swine umbilical vein endothelial cells with human telomerase reverse transcriptase. Mol Cells 24:358–363Google Scholar
  14. Ibi M, Ishisaki A, Yamamoto M, Wada S, Kozakai T, Nakashima A, Iida J, Takao S, Izumi Y, Yokoyama A, Tamura M (2007) Establishment of cell lines that exhibit pluripotency from miniature swine periodontal ligaments. Arch Oral Biol 52:1002–1008CrossRefGoogle Scholar
  15. Itahana K, Zou Y, Itahana Y, Martinez JL, Beausejour C, Jacobs JJ, Van Lohuizen M, Band V, Campisi J, Dimri GP (2003) Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol 23:389–401CrossRefGoogle Scholar
  16. Izsvák Z, Chuah MK, Vandendriessche T, Ivics Z (2009) Efficient stable gene transfer into human cells by the Sleeping Beauty transposon vectors. Methods 49:287–297 CrossRefGoogle Scholar
  17. Jiang XR, Jimenez G, Chang E, Frolkis M, Kusler B, Sage M, Beeche M, Bodnar AG, Wahl GM, Tlsty TD, Chiu CP (1999) Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat Genet 21:111–114CrossRefGoogle Scholar
  18. Kacherovsky N, Harkey MA, Blau CA, Giachelli CM, Pun SH (2012) Combination of Sleeping Beauty transposition and chemically induced dimerization selection for robust production of engineered cells. Nucleic Acids Res 40:e85CrossRefGoogle Scholar
  19. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396:84–88CrossRefGoogle Scholar
  20. Kolacsek O, Krízsik V, Schamberger A, Erdei Z, Apáti A, Várady G, Mátés L, Izsvák Z, Ivics Z, Sarkadi B, Orbán TI (2011) Reliable transgene-independent method for determining Sleeping Beauty transposon copy numbers. Mob DNA 2:5CrossRefGoogle Scholar
  21. Kuruvilla L, Santhoshkumar TR, Kartha CC (2007) Immortalization and characterization of porcine ventricular endocardial endothelial cells. Endothelium 14:35–43CrossRefGoogle Scholar
  22. Kwak S, Jung JE, Jin X, Kim SM, Kim TK, Lee JS, Lee SY, Pian X, You S, Kim H, Choi YJ (2006) Establishment of immortal swine kidney epithelial cells. Anim Biotechnol 17:51–58CrossRefGoogle Scholar
  23. Liu TM, Ng WM, Tan HS, Vinitha D, Yang Z, Fan JB, Zou Y, Hui JH, Lee EH, Lim B (2013) Molecular basis of immortalization of human mesenchymal stem cells by combination of p53 knockdown and human telomerase reverse transcriptase overexpression. Stem Cells Dev 22:268–278CrossRefGoogle Scholar
  24. Mátrai J, Chuah MK, Vanden-Driessche T (2010) Recent advances in lentiviral vector development and applications. Mol Ther 18:477–490CrossRefGoogle Scholar
  25. Morales CP, Holt SE, Ouellette M, Kaur KJ, Yan Y, Wilson KS, White MA, Wright WE, Shay JW (1999) Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat Genet 21:115–118CrossRefGoogle Scholar
  26. Norrman K, Fischer Y, Bonnamy B, Wolfhagen Sand F, Ravassard P, Semb H (2010) Quantitative comparison of constitutive promoters in human ES cells. PLos One 5:e12413CrossRefGoogle Scholar
  27. Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T, Hanada H, Perry AC (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science 289:1188–1190CrossRefGoogle Scholar
  28. O’Reilly M, Shipp A, Rosenthal E, Jambou R, Shih T, Montgomery M, Gargiulo L, Patterson A, Corrigan-Curay J (2012) NIH oversight of human gene transfer research involving retroviral, lentiviral, and adeno-associated virus vectors and the role of the NIH recombinant DNA advisory committee. Methods Enzymol 507:313–335CrossRefGoogle Scholar
  29. Ouellette MM, McDaniel LD, Wright WE, Shay JW, Schultz RA (2000) The establishment of telomerase-immortalized cell lines representing human chromosome instability syndromes. Hum Mol Genet 9:403–411CrossRefGoogle Scholar
  30. Pan X, Du W, Yu X, Sheng G, Cao H, Yu C, Lv G, Huang H, Chen Y, Li J, Li LJ (2010) Establishment and characterization of immortalized porcine hepatocytes for the study of hepatocyte xenotransplantation. Transplant Proc 42:1899–1906CrossRefGoogle Scholar
  31. Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT (2010) Systematic comparison of constitutive promoters and the doxycycline-induced promoter. PLoS One 5:e10611CrossRefGoogle Scholar
  32. Sagong M, Park CK, Kim SH, Lee KK, Lee OS, du Lee S, Cha SY, Lee C (2012) Human telomerase reverse transcriptase-immortalized porcine monomyeloid cell lines for the production of porcine reproductive and respiratory syndrome virus. J Virol Methods 179:26–32CrossRefGoogle Scholar
  33. Scharfmann R, Axelrod JH, Verma IM (1991) Long-term in vivo expression of retrovirus-mediated gene transfer in mouse fibroblast implants. Proc Natl Acad Sci USA 88:4626–4630CrossRefGoogle Scholar
  34. Staunstrup NH, Moldt B, Mátés L, Villesen P, Jakobsen M, Ivics Z, Izsvák Z, Mikkelsen JG (2009) Hybrid lentivirus-transposon vectors with a random integration profile in human cells. Mol Ther 17:1205–1214CrossRefGoogle Scholar
  35. Taylor LM, James A, Schuller CE, Brce J, Lock RB, Mackenzie KL (2004) Inactivation of p16INK4a, with retention of pRB and p53/p21cip1 function, in human MRC5 fibroblasts that overcome a telomere-independent crisis during immortalization. J Biol Chem 279:43634–43645CrossRefGoogle Scholar
  36. Uebing-Czipura AU, Dawson HD, Scherba G (2008) Immortalization and characterization of lineage-restricted neuronal progenitor cells derived from the porcine olfactory bulb. J Neurosci Methods 170:262–276CrossRefGoogle Scholar
  37. Wieser M, Stadler G, Jennings P, Streubel B, Pfaller W, Ambros P, Riedl C, Katinger H, Grillari J, Grillari-Voglauer R (2008) hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics. Am J Physiol Renal Physiol 295:F1365–F1375CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Shan He
    • 1
  • Yangyang Li
    • 1
  • Yang Chen
    • 1
  • Yue Zhu
    • 1
  • Xinyu Zhang
    • 1
  • Xiaoli Xia
    • 1
  • Huaichang Sun
    • 1
  1. 1.College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityYangzhouPeople’s Republic of China

Personalised recommendations