Advertisement

Cytotechnology

, Volume 68, Issue 4, pp 1325–1335 | Cite as

Osteoprotegerin exposure at different stages of osteoclastogenesis differentially affects osteoclast formation and function

  • Hongyan Zhao
  • Jianhong Gu
  • Nannan Dai
  • Qian Gao
  • Dong Wang
  • Ruilong Song
  • Wei Liu
  • Yan Yuan
  • Jianchun Bian
  • Xuezhong Liu
  • Zongping Liu
Original Research
  • 277 Downloads

Abstract

This study aimed to investigate the effects of osteoprotegerin (OPG), a decoy receptor for receptor activator for nuclear factor κB ligand (RANKL), during the various stages of osteoclast differentiation, and additionally investigate its effects on osteoclast adhesion and activity. RAW264.7 murine monocytic cells were incubated with macrophage colony-stimulating factor and RANKL for 1, 3, 5, or 7 days, followed by an additional 24-h incubation in the presence or absence of OPG (80 ng/mL). We examined osteoclast differentiation and adhesion capacity using the tartrate-resistant acid phosphatase (TRAP) assay and immunofluorescence microscopy, and additionally examined cell growth in real time using the xCELLigence system. Furthermore, the expression levels of TRAP, RANK, integrin β3, matrix metalloproteinase 9, cathepsin K, carbonic anhydrase II, and vesicular-type H+-ATPase A1 were examined using western blotting. OPG exposure on day 1 enhanced the osteoclast growth curve as well as adhesion, and increased RANK and integrin β3 expression. In contrast, exposure to OPG at later time points (days 3–7) inhibited osteoclast differentiation, adhesion structure formation, and protease expression. In conclusion, the biological effects of OPG exposure at the various stages of osteoclast differentiation were varied, and included the enhanced adhesion and survival of preosteoclasts, the block of differentiation from the early to the terminal stages of osteoclastogenesis, and suppression of mature osteoclast activation following OPG exposure during the terminal differentiation stage, suggesting that the effects of OPG exposure differ based on the stage of differentiation.

Keywords

Osteoclast Osteoprotegerin Differentiation Adhesion Activation 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Grant Numbers 31172373, 31302154, 31372495), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant Number 20113250110003), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Graduate Innovation Project of Jiangsu Province (Grant Number CXZZ12_0917).

References

  1. Baud’huin M, Lamoureux F, Duplomb L, Redini F, Heymann D (2007) RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases. Cell Mol Life Sci 64:2334–2350CrossRefGoogle Scholar
  2. Baud’huin M, Duplomb L, Teletchea S, Lamoureux F, Ruiz-Velasco C, Maillasson M, Redini F, Heymann MF, Heymann D (2013) Osteoprotegerin: multiple partners for multiple functions. Cytokine Growth Factor Rev 24:401–409CrossRefGoogle Scholar
  3. Boyce BF (2013) Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res 92:860–867CrossRefGoogle Scholar
  4. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342CrossRefGoogle Scholar
  5. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268CrossRefGoogle Scholar
  6. Chamoux E, Houde N, L’Eriger K, Roux S (2008) Osteoprotegerin decreases human osteoclast apoptosis by inhibiting the TRAIL pathway. J Cell Physiol 216:536–542CrossRefGoogle Scholar
  7. Chen J, He J-Q, Zhen S-Y, Huang I-Q (2012) OPG inhibits gene expression of RANK and CAII in mouse osteoclast-like cell. Rheumatol Int 32:3993–3998CrossRefGoogle Scholar
  8. Colnot C, Thompson Z, Miclau T, Werb Z, Helms JA (2003) Altered fracture repair in the absence of MMP9. Development 130:4123–4133CrossRefGoogle Scholar
  9. Deborah V, Novack RF (2011) Osteoclast motility: putting the brakes on bone resorption. Ageing Res Rev 10:54–61CrossRefGoogle Scholar
  10. Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, Dul E, Appelbaum ER, Eichman C, DiPrinzio R, Dodds RA, James IE, Rosenberg M, Lee JC, Young PR (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273:14363–14367CrossRefGoogle Scholar
  11. Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkidsen B, Lund LR, Henriksen K, Lenhard T, Foged NT, Werb Z, Delaisse JM (2000) Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 151:879–889CrossRefGoogle Scholar
  12. Fu YX, Gu JH, Zhang YR, Tong XS, Zhao HY, Yuan Y, Liu XZ, Bian JC, Liu ZP (2013a) Inhibitory effects of osteoprotegerin on osteoclast formation and function under serum-free conditions. J Vet Sci 14:405–412CrossRefGoogle Scholar
  13. Fu YX, Gu JH, Zhang YR, Tong XS, Zhao HY, Yuan Y, Liu XZ, Bian JC, Liu ZP (2013b) Osteoprotegerin influences the bone resorption activity of osteoclasts. Int J Mol Med 31:1411–1417Google Scholar
  14. Hofbauer LC, Neubauer A, Heufelder AE (2001) Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer 92:460–470CrossRefGoogle Scholar
  15. Hu Y, Ek-Rylander B, Karlstrom E, Wendel M, Andersson G (2008) Osteoclast size heterogeneity in rat long bones is associated with differences in adhesive ligand specificity. Exp Cell Res 314:638–650CrossRefGoogle Scholar
  16. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549CrossRefGoogle Scholar
  17. Kobayashi-Sakamoto M, Isogai E, Hirose K, Chiba I (2008) Role of alphav integrin in osteoprotegerin-induced endothelial cell migration and proliferation. Microvasc Res 76:139–144CrossRefGoogle Scholar
  18. Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, Hasan C, Bode U, Jentsch TJ, Kubisch C (2000) Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 9:2059–2063CrossRefGoogle Scholar
  19. Lees RL, Heersche JN (1999) Macrophage colony stimulating factor increases bone resorption in dispersed osteoclast cultures by increasing osteoclast size. J Bone Miner Res 14:937–945CrossRefGoogle Scholar
  20. Lindsey AE, Schneider K, Simmons DM, Baron R, Lee BS, Kopito RR (1990) Functional expression and subcellular localization of an anion exchanger cloned from choroid plexus. Proc Natl Acad Sci USA 87:5278–5282CrossRefGoogle Scholar
  21. Mangan SH, Van Campenhout A, Rush C, Golledge J (2007) Osteoprotegerin upregulates endothelial cell adhesion molecule response to tumor necrosis factor-alpha associated with induction of angiopoietin-2. Cardiovasc Res 76:494–505CrossRefGoogle Scholar
  22. Nakamura I, Takahashi N, Sasaki T, Jimi E, Kurokawa T, Suda T (1996) Chemical and physical properties of the extracellular matrix are required for the actin ring formation in osteoclasts. J Bone Miner Res 11:1873–1879CrossRefGoogle Scholar
  23. Neville-Webbe HL, Cross NA, Eaton CL, Nyambo R, Evans CA, Coleman RE, Holen I (2004) Osteoprotegerin (OPG) produced by bone marrow stromal cells protects breast cancer cells from TRAIL-induced apoptosis. Breast Cancer Res Treat 86:269–279CrossRefGoogle Scholar
  24. Okada Y, Naka K, Kawamura K, Matsumoto T, Nakanishi I, Fujimoto N, Sato H, Seiki M (1995) Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: implications for bone resorption. Lab Invest 72:311–322Google Scholar
  25. Price CP, Kirwan A, Vader C (1995) Tartrate-resistant acid phosphatase as a marker of bone resorption. Clin Chem 41:641–643Google Scholar
  26. Reponen P, Sahlberg C, Munaut C, Thesleff I, Tryggvason K (1994) High expression of 92-kD type IV collagenase (gelatinase B) in the osteoclast lineage during mouse development. J Cell Biol 124:1091–1102CrossRefGoogle Scholar
  27. Saftig P, Hunziker E, Everts V, Jones S, Boyde A, Wehmeyer O, Suter A, Figura KV (2000) Functions of cathepsin K in bone resorption. Lessons from cathepsin K deficient mice. Adv Exp Med Biol 477:293–303CrossRefGoogle Scholar
  28. Shipman CM, Croucher PI (2003) Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res 63:912–916Google Scholar
  29. Silver IA, Murrills RJ, Etherington DJ (1988) Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res 175:266–276CrossRefGoogle Scholar
  30. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319CrossRefGoogle Scholar
  31. Tanabe N, Ito-Kato E, Suzuki N, Nakayama A, Ogiso B, Maeno M, Ito K (2004) IL-1alpha affects mineralized nodule formation by rat osteoblasts. Life Sci 75:2317–2327CrossRefGoogle Scholar
  32. Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D (2004) The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev 15:457–475CrossRefGoogle Scholar
  33. Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA 87:7260–7264CrossRefGoogle Scholar
  34. Wittrant Y, Couillaud S, Theoleyre S, Dunstan C, Heymann D, Rédini F (2002) Osteoprotegerin differentially regulates protease expression in osteoclast cultures. Biochem Biophys Res Commun 293:38–44CrossRefGoogle Scholar
  35. Wright HL, McCarthy HS, Middleton J, Marshall MJ (2009) RANK, RANKL and osteoprotegerin in bone biology and disease. Curr Rev Musculoskelet Med 2:56–64CrossRefGoogle Scholar
  36. Xing L, Xiu Y, Boyce BF (2012) Osteoclast fusion and regulation by RANKL-dependent and independent factors. World J Orthop 3:212–222CrossRefGoogle Scholar
  37. Yu X, Huang Y, Collin-Osdoby P, Osdoby P (2003) Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J Bone Miner Res 18:1404–1418CrossRefGoogle Scholar
  38. Zaidi M, Troen B, Moonga BS, Abe E (2001) Cathepsin K, osteoclastic resorption, and osteoporosis therapy. J Bone Miner Res 16:1747–1749CrossRefGoogle Scholar
  39. Zauli G, Corallini F, Bossi F, Fischetti F, Durigutto P, Celeghini C, Tedesco F, Secchiero P (2007) Osteoprotegerin increases leukocyte adhesion to endothelial cells both in vitro and in vivo. Blood 110:536–543CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hongyan Zhao
    • 1
    • 2
  • Jianhong Gu
    • 1
    • 2
  • Nannan Dai
    • 1
    • 2
  • Qian Gao
    • 1
    • 2
  • Dong Wang
    • 1
    • 2
  • Ruilong Song
    • 1
    • 2
  • Wei Liu
    • 1
    • 2
  • Yan Yuan
    • 1
    • 2
  • Jianchun Bian
    • 1
    • 2
  • Xuezhong Liu
    • 1
    • 2
  • Zongping Liu
    • 1
    • 2
  1. 1.College of Veterinary MedicineYangzhou UniversityYangzhouPeople’s Republic of China
  2. 2.Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouPeople’s Republic of China

Personalised recommendations