Skip to main content
Log in

Spatiotemporal expression of Prdm genes during Xenopus development

  • JAACT Special Issue
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Epigenetic regulation is known to be important in embryonic development, cell differentiation and regulation of cancer cells. Molecular mechanisms of epigenetic modification have DNA methylation and histone tail modification such as acetylation, phosphorylation and ubiquitination. Until now, many kinds of enzymes that modify histone tail with various functional groups have been reported and regulate the epigenetic state of genes. Among them, Prdm genes were identified as histone methyltransferase. Prdm genes are characterized by an N-terminal PR/SET domain and C-terminal some zinc finger domains and therefore they are considered to have both DNA-binding ability and methylation activity. Among vertebrate, fifteen members are estimated to belong to Prdm genes family. Even though Prdm genes are thought to play important roles for cell fate determination and cell differentiation, there is an incomplete understanding of their expression and functions in early development. Here, we report that Prdm genes exhibit dynamic expression pattern in Xenopus embryogenesis. By whole mount in situ hybridization analysis, we show that Prdm genes are expressed in spatially localized manners in embryo and all of Prdm genes are expressed in neural cells in developing central nervous systems. Our study suggests that Prdm genes may be new candidates to function in neural cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, Kuhfittig S, Wolf A, Lebersorger A, Singh PB, Reuter G, Jenuwein T (1999) Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3–9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J 18:1923–1938

    Article  CAS  Google Scholar 

  • Ancelin K, Lange UC, Hajkova P, Schneider R, Bannister AJ, Kouzarides T, Surani MA (2006) Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat Cell Biol 8:623–630

    Article  CAS  Google Scholar 

  • Caretti G, Di Padova M, Micales B, Lyons GE, Sartorelli V (2004) The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev 18:2627–2638

    Article  CAS  Google Scholar 

  • Chang JC, Meredith DM, Mayer PR, Borromeo MD, Lai HC, Ou YH, Johnson JE (2013) Prdm13 mediates the balance of inhibitory and excitatory neurons in somatosensory circuits. Dev Cell 25:182–195

    Article  CAS  Google Scholar 

  • Chia NY, Chan YS, Feng B, Lu X, Orlov YL, Moreau D, Kumar P, Yang L, Jiang J, Lau MS, Huss M, Soh BS, Kraus P, Li P, Lufkin T, Lim B, Clarke ND, Bard F, Ng HH (2010) A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature 468:316–320

    Article  CAS  Google Scholar 

  • Chittka A, Nitarska J, Grazini U, Richardson WD (2012) Transcription factor positive regulatory domain 4 (PRDM4) recruits protein arginine methyltransferase 5 (PRMT5) to mediate histone arginine methylation and control neural stem cell proliferation and differentiation. J Biol Chem 287:42995–43006

    Article  CAS  Google Scholar 

  • Davis CA, Haberland M, Arnold MA, Sutherland LB, McDonald OG, Richardson JA, Childs G, Harris S, Owens GK, Olson EN (2006) PRISM/PRDM6, a transcriptional repressor that promotes the proliferative gene program in smooth muscle cells. Mol Cell Biol 26:2626–2636

    Article  CAS  Google Scholar 

  • Eom GH, Kim K, Kim SM, Kee HJ, Kim JY, Jin HM, Kim JR, Kim JH, Choe N, Kim KB, Lee J, Kook H, Kim N, Seo SB (2009) Histone methyltransferase PRDM8 regulates mouse testis steroidogenesis. Biochem Biophys Res Commun 388:131–136

    Article  CAS  Google Scholar 

  • Fumasoni I, Meani N, Rambaldi D, Scafetta G, Alcalay M, Ciccarelli FD (2007) Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates. BMC Evol Biol 7:187

    Article  Google Scholar 

  • Giallourakis CC, Bentia Y, Molinie B, Cao Z, Despo O, Pratt HE, Zukerberg LR, Daly MJ, Rioux JD, Xavier RJ (2013) Genome-wide analysis of immune system genes by expressed sequence Tag profiling. J Immunol 190:5578–5587

    Article  CAS  Google Scholar 

  • Glaser S, Schaft J, Lubitz S, Vintersten K, van der Hoeven F, Tufteland KR, Aasland R, Anastassiadis K, Ang SL, Stewart AF (2006) Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development 133:1423–1432

    Article  CAS  Google Scholar 

  • Hanotel J, Bessodes N, Thélie A, Hedderich M, Parain K, Van Driessche B, Brandão Kde O, Kricha S, Jorgensen MC, Grapin-Botton A, Serup P, Van Lint C, Perron M, Pieler T, Henningfeld KA, Bellefroid EJ (2014) The Prdm13 histone methyltransferase encoding gene is a Ptf1a–Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. Dev Biol 386:340–357

    Article  CAS  Google Scholar 

  • Hayashi K, Yoshida K, Matsui Y (2005) A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438:374–378

    Article  CAS  Google Scholar 

  • Inoue M, Kuroda T, Honda A, Komabayashi-Suzuki M, Komai T, Shinkai Y, Mizutani K (2014) Prdm8 regulates the morphogical transition at multipolar phase during neocortical development. PLoS ONE 9:e86356

    Article  Google Scholar 

  • Jenuwein T, Laible G, Dorn R, Reuter G (1998) SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol Life Sci 54:80–93

    Article  CAS  Google Scholar 

  • Jones CM, Smith JC (1999) Whole mount in situ hybridization to Xenopus embryos. Methods Mol Biol 97:635–640

    CAS  Google Scholar 

  • Karmodiya K, Analika K, Muley V, Pradhan SJ, Bhide Y, Galande S (2014) Camello, a novel family of Histone Acetyltransferases that acetylate histone H4 and is essential for zebrafish development. Sci Rep 4:6076

    Article  CAS  Google Scholar 

  • Kim KC, Geng L, Huang S (2003) Inactivation of a histone methyltransferase by mutations in human cancers. Cancer Res 63:7619–7623

    CAS  Google Scholar 

  • Kinameri E, Inoue T, Aruga J, Imayoshi I, Kageyama R, Shimogori T, Moore AW (2008) Prdm proto-oncogene transcription factor family expression and interaction with the Notch–Hes pathway in mouse neurogenesis. PLoS ONE 3:e3859

    Article  Google Scholar 

  • Komai T, Iwanari H, Mochizuki Y, Hamakubo T, Shinkai Y (2009) Expression of the mouse PR domain protein Prdm8 in the developing central nervous system. Gene Expr Patterns 9:503–514

    Article  CAS  Google Scholar 

  • Moore AW, Jan LY, Jan YN (2002) hamlet, a binary genetic switch between single- and multiple-dendrite neuron morphology. Science 297:1355–1358

    Article  CAS  Google Scholar 

  • Niewkoop PD, Faber J (1994) Normal table of Xenopus laevis (daudin). Garland Publishing, New York and London

  • Nishikawa N, Toyota M, Suzuki H, Honma T, Fujikane T, Ohmura T, Nishidate T, Ohe-Toyota M, Maruyama R, Sonoda T, Sasaki Y, Urano T, Imai K, Hirata K, Tokino T (2007) Gene amplification and overexpression of PRDM14 in breast cancers. Cancer Res 67:9649–9657

    Article  CAS  Google Scholar 

  • O’Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T (2001) The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol 21:4330–4336

    Article  Google Scholar 

  • Park JA, Kim KC (2010) Expression patterns of PRDM10 during mouse embryonic development. BMB Rep 43:29–33

    Article  CAS  Google Scholar 

  • Pinheiro I, Margueron R, Shukeir N, Eisold M, Fritzsch C, Richter FM, Mittler G, Genoud C, Goyama S, Kurokawa M, Son J, Reinberg D, Lachner M, Jenuwein T (2012) Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell 150:948–960

    Article  CAS  Google Scholar 

  • Qian C, Zhou MM (2006) SET domain protein lysine methyltransferase: structure, specificity and catalysis. Cell Mol Life Sci 63:2755–2763

    Article  CAS  Google Scholar 

  • Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scimè A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967

    Article  CAS  Google Scholar 

  • Tam W, Gomez M, Chadburn A, Lee JW, Chan WC, Knowles DM (2006) Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood 107:4090–4100

    Article  CAS  Google Scholar 

  • Thoren LA, Fog CK, Jensen KT, Buza-Vidas N, Côme C, Lund AH, Porse BT (2013) PRDM11 is dispensable for the maintenance and function of hematopoietic stem and progenitor cells. Stem Cell Res 11:1129–1136

    Article  CAS  Google Scholar 

  • Trievel RC, Beach BM, Dirk LM, Houtz RL, Hurley JH (2002) Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111:91–103

    Article  CAS  Google Scholar 

  • Van Campenhout C, Nichane M, Antoniou A, Pendeville H, Bronchain OJ, Marine JC, Mazabraud A, Voz ML, Bellefroid EJ (2006) Evi1 is specifically expressed in ghe distal tubule and duct of the Xenopus pronephros and plays a role in its formation. Dev Biol 294:203–219

    Article  Google Scholar 

  • Wang C, Schroeder FA, Wey HY, Borra R, Wagner FF, Reis S, Kim SW, Holson EB, Haggarty SJ, Hooker JM (2014) In vivo imaging of histone deacetylases (HDACs) in the central nervous system and major peripheral organs. J Med Chem 57:7999–8009

    Article  CAS  Google Scholar 

  • Wu Y, Ferguson JE 3rd, Wang H, Kelley R, Ren R, McDonough H, Meeker J, Charles PC, Wang H, Patterson C (2008) PRDM6 is enriched in vascular precursors during development and inhibits endothelial cell proliferation, survival, and differentiation. J Mol Cell Cardiol 44:47–58

    Article  CAS  Google Scholar 

  • Yamaji M, Seki Y, Kurimoto K, Yabuta Y, Yuasa M, Shigeta M, Yamanaka K, Ohinata Y, Saitou M (2008) Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat Genet 40:1016–1022

    Article  CAS  Google Scholar 

  • Yang CM, Shinkai Y (2013) Prdm12 is induced by retinoic acid and exhibits anti-proliferative properties through the cell cycle modulation of P19 embryonic carcinoma cells. Cell Struct Funct 38:197–206

    Article  Google Scholar 

  • Yu BD, Hanson RD, Hess JL, Horning SE, Korsmeyer SJ (1998) MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc Natl Acad Sci USA 95:10632–10636

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Tashiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eguchi, R., Yoshigai, E., Koga, T. et al. Spatiotemporal expression of Prdm genes during Xenopus development. Cytotechnology 67, 711–719 (2015). https://doi.org/10.1007/s10616-015-9846-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-015-9846-0

Keywords

Navigation