, Volume 67, Issue 5, pp 749–759 | Cite as

Immunobiology and signaling pathways of cancer stem cells: implication for cancer therapy

  • Mohamed L. Salem
  • Ahmed S. El-Badawy
  • Zihai Li


Cancer stem cells (CSCs) need to survive cancer treatments with a specific end goal to provide new, more differentiated, metastatic-prone cancerous cells. This happens through diverse signals delivered within the tumor microenvironment where ample evidence indicates that altered developmental signaling pathways play an essential role in maintaining CSCs and accordingly the survival and the progression of the tumor itself. This review summarizes findings on the immunobiological properties of CSCs as compared with cancerous non-stem cells involving the expression of immunological molecules, cytokines and tumor antigens as well as the roles of the Notch, Wnt and Hedgehog pathways in the brain, breast and colon CSCs. We concluded that if CSCs are the main driving force behind tumor support and growth then understanding the molecular mechanisms and the immunological properties directing these cells for immune tolerance is of great clinical significance. Such knowledge will contribute to designing better targeted therapies that could prevent tumor recurrence and accordingly significantly improve cancer treatments and patient survival.


Cancer stem cells Hedgehog Immunobiology Notch Wnt 



This work is supported by a Grant (ID No. 5245) funded by the Science and Technology and Development Fund (STDF), Egypt to Mohamed L. Salem and by a fellowship from the Cultural Affairs and Mission Sector, Ministry of Higher Education, Egypt to Mohamed L. Salem. Zihai Li is Abney Chair Remembering Sally Abney Rose in Stem Cell Biology and Therapy, who is supported by the SmartState Endowed Chair Program of South Carolina, USA.


  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988CrossRefGoogle Scholar
  2. Athar M, Tang X, Lee JL, Kopelovich L, Kim AL (2006) Hedgehog signalling in skin development and cancer. Exp Dermatol 15:667–677CrossRefGoogle Scholar
  3. Avril T, Vauleon E, Hamlat A, Saikali S, Etcheverry A, Delmas C, Diabira S, Mosser J, Quillien V (2011) Human glioblastoma stem-like cells are more sensitive to allogeneic NK and T cell-mediated killing compared with serum-cultured glioblastoma cells. Brain Pathol 22:159–174CrossRefGoogle Scholar
  4. Baeza N, Masuoka J, Kleihues P, Ohgaki H (2003) AXIN1 mutations but not deletions in cerebellar medulloblastomas. Oncogene 22:632–636CrossRefGoogle Scholar
  5. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760CrossRefGoogle Scholar
  6. Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W, Piccirillo S, Vescovi AL, DiMeco F, Olivi A, Eberhart CG (2007) Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25:2524–2533CrossRefGoogle Scholar
  7. Blank U, Karlsson G, Karlsson S (2008) Signaling pathways governing stem-cell fate. Blood 111:492–503CrossRefGoogle Scholar
  8. Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, Butler PD, Yang GP, Joshua B, Kaplan MJ, Longaker MT, Weissman IL (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466:133–137CrossRefGoogle Scholar
  9. Brewer BG, Mitchell RA, Harandi A, Eaton JW (2009) Embryonic vaccines against cancer: an early history. Exp Mol Pathol 86:192–197CrossRefGoogle Scholar
  10. Chen Y, Yu D, Zhang H, He H, Zhang C, Zhao W, Shao RG (2011) CD133(+) EpCAM(+) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells. Int J Biol Sci 8:992–1004CrossRefGoogle Scholar
  11. Choi D, Lee HW, Hur KY, Kim JJ, Park GS, Jang SH, Song YS, Jang KS, Paik SS (2009) Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal adenocarcinoma. World J Gastroenterol 15:2258–2264CrossRefGoogle Scholar
  12. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172CrossRefGoogle Scholar
  13. Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17:313–319CrossRefGoogle Scholar
  14. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951CrossRefGoogle Scholar
  15. Comber JD, Philip R (2014) MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines. Ther Adv Vaccines 2:77–89CrossRefGoogle Scholar
  16. Cui W, Wang LH, Wen YY, Song M, Li BL, Chen XL, Xu M, An SX, Zhao J, Lu YY, Mi XY, Wang EH (2010) Expression and regulation mechanisms of Sonic Hedgehog in breast cancer. Cancer Sci 101:927–933CrossRefGoogle Scholar
  17. Debeb BG, Xu W, Woodward WA (2009) Radiation resistance of breast cancer stem cells: understanding the clinical framework. J Mammary Gland Biol Neoplasia 14:11–17CrossRefGoogle Scholar
  18. Dessaud E, McMahon AP, Briscoe J (2008) Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135:2489–2503CrossRefGoogle Scholar
  19. Di Tomaso T, Mazzoleni S, Wang E, Sovena G, Clavenna D, Franzin A, Mortini P, Ferrone S, Doglioni C, Marincola FM, Galli R, Parmiani G, Maccalli C (2010) Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin Cancer Res 16:800–813CrossRefGoogle Scholar
  20. Dievart A, Beaulieu N, Jolicoeur P (1999) Involvement of Notch1 in the development of mouse mammary tumors. Oncogene 18:5973–5981CrossRefGoogle Scholar
  21. Dong W, Du J, Shen H, Gao D, Li Z, Wang G, Mu X, Liu Q (2010) Administration of embryonic stem cells generates effective antitumor immunity in mice with minor and heavy tumor load. Cancer Immunol Immunother 59:1697–1705CrossRefGoogle Scholar
  22. Dong W, Qiu C, Shen H, Liu Q, Du J (2013) Antitumor effect of embryonic stem cells in a non-small cell lung cancer model: antitumor factors and immune responses. Int J Med Sci 10:1314–1320CrossRefGoogle Scholar
  23. Douard R, Moutereau S, Pernet P, Chimingqi M, Allory Y, Manivet P, Conti M, Vaubourdolle M, Cugnenc PH, Loric S (2006) Sonic Hedgehog-dependent proliferation in a series of patients with colorectal cancer. Surgery 139:665–670CrossRefGoogle Scholar
  24. Ellebaek E, Andersen MH, Svane IM, Straten PT (2012) Immunotherapy for metastatic colorectal cancer: present status and new options. Scand J Gastroenterol 47:315–324CrossRefGoogle Scholar
  25. Ernst A, Aigner M, Nakata S, Engel F, Schlotter M, Kloor M, Brand K, Schmitt S, Steinert G, Rahbari N, Koch M, Radlwimmer B, Weitz J, Lichter P (2011) A gene signature distinguishing CD133hi from CD133− colorectal cancer cells: essential role for EGR1 and downstream factors. Pathology 43:220–227CrossRefGoogle Scholar
  26. Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM, Eberhart CG (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66:7445–7452CrossRefGoogle Scholar
  27. Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, Nikkhah G, Dimeco F, Piccirillo S, Vescovi AL, Eberhart CG (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28:5–16Google Scholar
  28. Fiaschi M, Rozell B, Bergstrom A, Toftgard R (2009) Development of mammary tumors by conditional expression of GLI1. Cancer Res 69:4810–4817CrossRefGoogle Scholar
  29. Francipane MG, Alea MP, Lombardo Y, Todaro M, Medema JP, Stassi G (2008) Crucial role of interleukin-4 in the survival of colon cancer stem cells. Cancer Res 68:4022–4025CrossRefGoogle Scholar
  30. Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S (2005) Notch signals control the fate of immature progenitor cells in the intestine. Nature 435:964–968CrossRefGoogle Scholar
  31. Gedye C, Quirk J, Browning J, Svobodova S, John T, Sluka P, Dunbar PR, Corbeil D, Cebon J, Davis ID (2009) Cancer/testis antigens can be immunological targets in clonogenic CD133+ melanoma cells. Cancer Immunol Immunother 58:1635–1646CrossRefGoogle Scholar
  32. Geyer FC, Lacroix-Triki M, Savage K, Arnedos M, Lambros MB, MacKay A, Natrajan R, Reis-Filho JS (2011) Beta-catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol 24:209–231CrossRefGoogle Scholar
  33. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567CrossRefGoogle Scholar
  34. Goodrich LV, Milenkovic L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277:1109–1113CrossRefGoogle Scholar
  35. Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A, Vorechovsky I, Holmberg E, Unden AB, Gillies S, Negus K, Smyth I, Pressman C, Leffell DJ, Gerrard B, Goldstein AM, Dean M, Toftgard R, Chenevix-Trench G, Wainwright B, Bale AE (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851CrossRefGoogle Scholar
  36. Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, Bundred NJ, Clarke RB (2010) Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 70:709–718CrossRefGoogle Scholar
  37. Hilton J (1984) Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Res 44:5156–5160Google Scholar
  38. Hjelmeland AB, Rich JN (2012) The quest for self-identity: not all cancer stem cells are the same. Clin Cancer Res 18:3495–3498CrossRefGoogle Scholar
  39. Hoey T, Yen WC, Axelrod F, Basi J, Donigian L, Dylla S, Fitch-Bruhns M, Lazetic S, Park IK, Sato A, Satyal S, Wang X, Clarke MF, Lewicki J, Gurney A (2009) DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5:168–177CrossRefGoogle Scholar
  40. Holcombe RF, Marsh JL, Waterman ML, Lin F, Milovanovic T, Truong T (2002) Expression of Wnt ligands and Frizzled receptors in colonic mucosa and in colon carcinoma. Mol Pathol 55:220–226CrossRefGoogle Scholar
  41. Kalluri R, Weinberg RA (2009) The basics of epithelial–mesenchymal transition. J Clin Invest 119:1420–1428CrossRefGoogle Scholar
  42. Kelly PN, Strasser A (2011) The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ 18:1414–1424CrossRefGoogle Scholar
  43. Koshio J, Kagamu H, Nozaki K, Saida Y, Tanaka T, Shoji S, Igarashi N, Miura S, Okajima M, Watanabe S, Yoshizawa H, Narita I (2013) DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 3, X-linked is an immunogenic target of cancer stem cells. Cancer Immunol Immunother 62:1619–1628CrossRefGoogle Scholar
  44. Lai D, Wang F, Chen Y, Wang C, Liu S, Lu B, Ge X, Guo L (2012) Human ovarian cancer stem-like cells can be efficiently killed by gammadelta T lymphocytes. Cancer Immunol Immunother 61:979–989CrossRefGoogle Scholar
  45. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648CrossRefGoogle Scholar
  46. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–896CrossRefGoogle Scholar
  47. Li Y, Laterra J (2012) Cancer stem cells: distinct entities or dynamically regulated phenotypes? Cancer Res 72:576–580CrossRefGoogle Scholar
  48. Li C, Lee CJ, Simeone DM (2009a) Identification of human pancreatic cancer stem cells. Methods Mol Biol 568:161–173CrossRefGoogle Scholar
  49. Li Y, Zeng H, Xu RH, Liu B, Li Z (2009b) Vaccination with human pluripotent stem cells generates a broad spectrum of immunological and clinical responses against colon cancer. Stem Cells 27:3103–3111Google Scholar
  50. Lucas S, Coulie PG (2008) About human tumor antigens to be used in immunotherapy. Semin Immunol 20:301–307CrossRefGoogle Scholar
  51. Lum L, Beachy PA (2004) The Hedgehog response network: sensors, switches, and routers. Science 304:1755–1759CrossRefGoogle Scholar
  52. Maccalli C, Volonte A, Cimminiello C, Parmiani G (2013) Immunology of cancer stem cells in solid tumours. A review. Eur J Cancer 50:649–655CrossRefGoogle Scholar
  53. Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21:283–296CrossRefGoogle Scholar
  54. Manoranjan B, Venugopal C, McFarlane N, Doble BW, Dunn SE, Scheinemann K, Singh SK (2012) Medulloblastoma stem cells: where development and cancer cross pathways. Pediatr Res 71:516–522CrossRefGoogle Scholar
  55. Moraes RC, Chang H, Harrington N, Landua JD, Prigge JT, Lane TF, Wainwright BJ, Hamel PA, Lewis MT (2009) Ptch1 is required locally for mammary gland morphogenesis and systemically for ductal elongation. Development 136:1423–1432CrossRefGoogle Scholar
  56. Naylor TL, Greshock J, Wang Y, Colligon T, Yu QC, Clemmer V, Zaks TZ, Weber BL (2005) High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization. Breast Cancer Res 7:R1186–R1198CrossRefGoogle Scholar
  57. Ning N, Pan Q, Zheng F, Teitz-Tennenbaum S, Egenti M, Yet J, Li M, Ginestier C, Wicha MS, Moyer JS, Prince ME, Xu Y, Zhang XL, Huang S, Chang AE, Li Q (2012) Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res 72:1853–1864CrossRefGoogle Scholar
  58. Nishizawa S, Hirohashi Y, Torigoe T, Takahashi A, Tamura Y, Mori T, Kanaseki T, Kamiguchi K, Asanuma H, Morita R, Sokolovskaya A, Matsuzaki J, Yamada R, Fujii R, Kampinga HH, Kondo T, Hasegawa T, Hara I, Sato N (2012) HSP DNAJB8 controls tumor-initiating ability in renal cancer stem-like cells. Cancer Res 72:2844–2854CrossRefGoogle Scholar
  59. Palma V, Lim DA, Dahmane N, Sanchez P, Brionne TC, Herzberg CD, Gitton Y, Carleton A, Alvarez-Buylla A, Ruiz i Altaba A (2005) Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132:335–344CrossRefGoogle Scholar
  60. Parmiani G, Russo V, Marrari A, Cutolo G, Casati C, Pilla L, Maccalli C, Rivoltini L, Castelli C (2007) Universal and stemness-related tumor antigens: potential use in cancer immunotherapy. Clin Cancer Res 13:5675–5679CrossRefGoogle Scholar
  61. Pece S, Serresi M, Santolini E, Capra M, Hulleman E, Galimberti V, Zurrida S, Maisonneuve P, Viale G, Di Fiore PP (2004) Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol 167:215–221CrossRefGoogle Scholar
  62. Pinto D, Gregorieff A, Begthel H, Clevers H (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17:1709–1713CrossRefGoogle Scholar
  63. Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J, Sundaresan T, Pastorino S, Park JK, Mikolaenko I, Maric D, Eberhart CG, Fine HA (2005) Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 65:2353–2363CrossRefGoogle Scholar
  64. Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65:8530–8537CrossRefGoogle Scholar
  65. Reedijk M, Odorcic S, Zhang H, Chetty R, Tennert C, Dickson BC, Lockwood G, Gallinger S, Egan SE (2008) Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol 33:1223–1229Google Scholar
  66. Saini V, Hose CD, Monks A, Nagashima K, Han B, Newton DL, Millione A, Shah J, Hollingshead MG, Hite KM, Burkett MW, Delosh RM, Silvers TE, Scudiero DA, Shoemaker RH (2012) Identification of CBX3 and ABCA5 as putative biomarkers for tumor stem cells in osteosarcoma. PLoS One 7:e41401CrossRefGoogle Scholar
  67. Schatton T, Frank MH (2009) Antitumor immunity and cancer stem cells. Ann N Y Acad Sci 1176:154–169CrossRefGoogle Scholar
  68. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH (2008) Identification of cells initiating human melanomas. Nature 451:345–349CrossRefGoogle Scholar
  69. Schatton T, Schutte U, Frank NY, Zhan Q, Hoerning A, Robles SC, Zhou J, Hodi FS, Spagnoli GC, Murphy GF, Frank MH (2010) Modulation of T-cell activation by malignant melanoma initiating cells. Cancer Res 70:697–708CrossRefGoogle Scholar
  70. Sikandar SS, Pate KT, Anderson S, Dizon D, Edwards RA, Waterman ML, Lipkin SM (2010) NOTCH signaling is required for formation and self-renewal of tumor-initiating cells and for repression of secretory cell differentiation in colon cancer. Cancer Res 70:1469–1478CrossRefGoogle Scholar
  71. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401CrossRefGoogle Scholar
  72. Tanaka H, Nakamura M, Kameda C, Kubo M, Sato N, Kuroki S, Tanaka M, Katano M (2009) The Hedgehog signaling pathway plays an essential role in maintaining the CD44+ CD24−/low subpopulation and the side population of breast cancer cells. Anticancer Res 29:2147–2157Google Scholar
  73. Theunissen JW, de Sauvage FJ (2009) Paracrine Hedgehog signaling in cancer. Cancer Res 69:6007–6010CrossRefGoogle Scholar
  74. Trowbridge JJ, Moon RT, Bhatia M (2006) Hematopoietic stem cell biology: too much of a Wnt thing. Nat Immunol 7:1021–1023CrossRefGoogle Scholar
  75. Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE (1988) Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55:619–625CrossRefGoogle Scholar
  76. Ulasov IV, Nandi S, Dey M, Sonabend AM, Lesniak MS (2010) Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy. Mol Med 17:103–112Google Scholar
  77. van den Brink GR, Bleuming SA, Hardwick JC, Schepman BL, Offerhaus GJ, Keller JJ, Nielsen C, Gaffield W, van Deventer SJ, Roberts DJ, Peppelenbosch MP (2004) Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet 36:277–282CrossRefGoogle Scholar
  78. Varnat F, Zacchetti G, Ruiz i Altaba A (2010) Hedgehog pathway activity is required for the lethality and intestinal phenotypes of mice with hyperactive Wnt signaling. Mech Dev 127:73–81CrossRefGoogle Scholar
  79. Veeck J, Geisler C, Noetzel E, Alkaya S, Hartmann A, Knuchel R, Dahl E (2008) Epigenetic inactivation of the secreted frizzled-related protein-5 (SFRP5) gene in human breast cancer is associated with unfavorable prognosis. Carcinogenesis 29:991–998CrossRefGoogle Scholar
  80. Vibhakar R, Foltz G, Yoon JG, Field L, Lee H, Ryu GY, Pierson J, Davidson B, Madan A (2007) Dickkopf-1 is an epigenetically silenced candidate tumor suppressor gene in medulloblastoma. Neuro Oncol 9:135–144CrossRefGoogle Scholar
  81. Visus C, Wang Y, Lozano-Leon A, Ferris RL, Silver S, Szczepanski MJ, Brand RE, Ferrone CR, Whiteside TL, Ferrone S, DeLeo AB, Wang X (2011) Targeting ALDH(bright) human carcinoma-initiating cells with ALDH1A1-specific CD8(+) T cells. Clin Cancer Res 17:6174–6184CrossRefGoogle Scholar
  82. Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, Rich JN, Sullenger BA (2010) Notch promotes radioresistance of glioma stem cells. Stem Cells 28:17–28CrossRefGoogle Scholar
  83. Wang YC, Yo YT, Lee HY, Liao YP, Chao TK, Su PH, Lai HC (2012) ALDH1-bright epithelial ovarian cancer cells are associated with CD44 expression, drug resistance, and poor clinical outcome. Am J Pathol 180:1159–1169CrossRefGoogle Scholar
  84. Wechsler-Reya R, Scott MP (2001) The developmental biology of brain tumors. Annu Rev Neurosci 24:385–428CrossRefGoogle Scholar
  85. Wolf I, Bose S, Desmond JC, Lin BT, Williamson EA, Karlan BY, Koeffler HP (2007) Unmasking of epigenetically silenced genes reveals DNA promoter methylation and reduced expression of PTCH in breast cancer. Breast Cancer Res Treat 105:139–155CrossRefGoogle Scholar
  86. Yaddanapudi K, Mitchell RA, Putty K, Willer S, Sharma RK, Yan J, Bodduluri H, Eaton JW (2012) Vaccination with embryonic stem cells protects against lung cancer: is a broad-spectrum prophylactic vaccine against cancer possible? PLoS One 7:e42289CrossRefGoogle Scholar
  87. Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, Chu PW, Lam CT, Poon RT, Fan ST (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13:153–166CrossRefGoogle Scholar
  88. Yoshikawa K, Shimada M, Miyamoto H, Higashijima J, Miyatani T, Nishioka M, Kurita N, Iwata T, Uehara H (2009) Sonic hedgehog relates to colorectal carcinogenesis. J Gastroenterol 44:1113–1117CrossRefGoogle Scholar
  89. Zardawi SJ, O’Toole SA, Sutherland RL, Musgrove EA (2009) Dysregulation of Hedgehog, Wnt and Notch signalling pathways in breast cancer. Histol Histopathol 24:385–398Google Scholar
  90. Zhang XP, Zheng G, Zou L, Liu HL, Hou LH, Zhou P, Yin DD, Zheng QJ, Liang L, Zhang SZ, Feng L, Yao LB, Yang AG, Han H, Chen JY (2008) Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol Cell Biochem 307:101–108CrossRefGoogle Scholar
  91. Zhang M, Atkinson RL, Rosen JM (2010) Selective targeting of radiation–resistant tumor-initiating cells. Proc Natl Acad Sci USA 107:3522–3527CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mohamed L. Salem
    • 1
    • 2
    • 3
  • Ahmed S. El-Badawy
    • 2
  • Zihai Li
    • 3
  1. 1.Immunology and Biotechnology Division, Zoology Department, Faculty of ScienceTanta UniversityTantaEgypt
  2. 2.Center of Excellence in Cancer Research (CECR)Tanta UniversityTantaEgypt
  3. 3.Microbiology and Immunology, College of MedicineMedical University of South CarolinaCharlestonUSA

Personalised recommendations