Advertisement

Cytotechnology

, Volume 68, Issue 4, pp 771–781 | Cite as

Autologous transplantation of CD34+ bone marrow derived mononuclear cells in management of non-reconstructable critical lower limb ischemia

  • Ahmed M. Ismail
  • Said M. Abdou
  • Hassan Abdel Aty
  • Adel H. Kamhawy
  • Mohammed Elhinedy
  • Mohammed Elwageh
  • Atef Taha
  • Amal Ezzat
  • Hoda A. Salem
  • Said Youssif
  • Mohamed L. Salem
Original Research

Abstract

Patients with a decrease in limb perfusion with a potential threat to limb viability manifested by ischemic rest pain, ischemic ulcers, and/or gangrene are considered to have critical limb ischemia (CLI). Because of this generally poor outcome, there is a strong need for attempting any procedure to save the affected limb. The aim of this work is to evaluate the possibility to use stem cell therapy as a treatment option for patients with chronic critical lower limb ischemia with no distal run off. This study includes 20 patients with chronic critical lower limb ischemia with no distal run off who are unsuitable for vascular or endovascular option. These patients underwent stem cell therapy (SCT) by autologous transplantation of bone marrow derived mononuclear cells. 55 % of patients treated with SCT showed improvement of the rest pain after the first month, 60 % continued improvement of the rest pain after 6 months, 75 % after 1 year and 80 % after 2 years and continued without any deterioration till the third year. Limb salvage rate after STC was 80 % after the first year till the end of the second and third years. SCT can result in angiogenesis in patients with no-option CLI, providing a foundation for the application of this therapy to leg ischemia.

Keywords

Bone marrow G-CSF Leg ischemia Mobilization CD34+ cells 

Notes

Acknowledgment

This work was funded by a grant from the Research Development Fund, Tanta University, Egypt.

Conflict of interest

The authors indicate no potential conflicts of interest.

References

  1. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Isner M (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972CrossRefGoogle Scholar
  2. Attanasio S, Snell J (2009) Therapeutic angiogenesis in the management of critical limb ischemia: current concepts and review. Cardiol Rev 17:115–120CrossRefGoogle Scholar
  3. Botti C, Maione C, Coppola A, Sica V, Cobellis G (2012) Autologous bone marrow cell therapy for peripheral arterial disease. Stem Cells Cloning 5:5–14Google Scholar
  4. Burt K, Loh Y, Pearce W, Beohar N, Barr G, Craig R, Kessler J (2008) Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA 299:925–936CrossRefGoogle Scholar
  5. Bussolino F, Ziche M, Wang M, Alessi D, Morbidelli L, Cremona O, Mantovani A (1991) In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest 87:986–995CrossRefGoogle Scholar
  6. Casamassimi A, Grimaldi V, Infante T, Al-Omran M, Crudele V, Napoli C (2012) Adult stem cells and the clinical arena: are we able to widely use this therapy in patients with chronic limbs arteriopathy and ischemic ulcers without possibility of revascularization? Cardiovasc Hematol Agents Med Chem 10:99–108CrossRefGoogle Scholar
  7. Chochola M, Pytlik R, Kobylka P, Skalicka L, Kideryova L, Beran S, Linhart A (2008) Autologous intra-arterial infusion of bone marrow mononuclear cells in patients with critical leg ischemia. Int Angiol 27:281–290Google Scholar
  8. Corona T, Rathbone R (2014) Accelerated functional recovery after skeletal muscle ischemia-reperfusion injury using freshly isolated bone marrow cells. J Surg Res 188:100–109CrossRefGoogle Scholar
  9. Dormandy J, Heeck L, Vig S (1999) Major amputations: clinical patterns and predictors. [Review]. Semin Vasc Surg 12:154–161Google Scholar
  10. Duong Van Huyen P, Smadja M, Bruneval P, Gaussem P, Dal-Cortivo L, Julia P, Emmerich J (2008) Bone marrow-derived mononuclear cell therapy induces distal angiogenesis after local injection in critical leg ischemia. Mod Pathol 21:837–846CrossRefGoogle Scholar
  11. Fischer M, Harting T, Jimenez F, Monzon-Posadas O, Xue H, Savitz I, Cox S (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18:683–692CrossRefGoogle Scholar
  12. Gao J, Dennis E, Muzic F, Lundberg M, Caplan I (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20CrossRefGoogle Scholar
  13. Guiducci S, Porta F, Saccardi R, Guidi S, Ibba-Manneschi L, Manetti M, Matucci-Cerinic M (2010) Autologous mesenchymal stem cells foster revascularization of ischemic limbs in systemic sclerosis: a case report. Ann Intern Med 153:650–654CrossRefGoogle Scholar
  14. Hirsch T, Haskal J, Hertzer R, Bakal W, Creager A, Halperin L, Vascular Disease F (2006) ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. [Practice Guideline]Google Scholar
  15. Ho L, Phyliky L, Li Y (2006) B-cell chronic lymphocytic leukemia: correlation of clinical stages with angiogenic cytokine expression. Appl Immunohistochem Mol Morphol 14:154–160CrossRefGoogle Scholar
  16. Inderbitzi R, Buttiker M, Pfluger D, Nachbur B (1992) The fate of bilateral lower limb amputees in end-stage vascular disease. Eur J Vasc Surg 6:321–326CrossRefGoogle Scholar
  17. Jarajapu P, Grant B (2010) The promise of cell-based therapies for diabetic complications: challenges and solutions. Circ Res 106:854–869CrossRefGoogle Scholar
  18. Kajiguchi M, Kondo T, Izawa H, Kobayashi M, Yamamoto K, Shintani S, Murohara T (2007) Safety and efficacy of autologous progenitor cell transplantation for therapeutic angiogenesis in patients with critical limb ischemia. Circ J 71:196–201CrossRefGoogle Scholar
  19. Lasala P, Silva A, Gardner A, Minguell J (2010) Combination stem cell therapy for the treatment of severe limb ischemia: safety and efficacy analysis. Angiology 61:551–556CrossRefGoogle Scholar
  20. Lawall H, Bramlage P, Amann B (2010) Stem cell and progenitor cell therapy in peripheral artery disease. A critical appraisal. [Review]. Thromb Haemost 103:696–709CrossRefGoogle Scholar
  21. Mizuno H, Miyamoto M, Shimamoto M, Koike S, Hyakusoku H, Kuroyanagi Y (2010) Therapeutic angiogenesis by autologous bone marrow cell implantation together with allogeneic cultured dermal substitute for intractable ulcers in critical limb ischaemia. J Plast Reconstr Aesthet Surg 63:1875–1882CrossRefGoogle Scholar
  22. Moscoso I, Barallobre J, de Ilarduya M, Anon P, Fraga M, Calvino R, Domenech N (2009) Analysis of different routes of administration of heterologous 5-azacytidine-treated mesenchymal stem cells in a porcine model of myocardial infarction. Transplant Proc 41:2273–2275CrossRefGoogle Scholar
  23. Motukuru V, Suresh R, Vivekanand V, Raj S, Girija R (2008) Therapeutic angiogenesis in Buerger’s disease (thromboangiitis obliterans) patients with critical limb ischemia by autologous transplantation of bone marrow mononuclear cells. J Vasc Surg 48:53S–60S; discussion 60SGoogle Scholar
  24. Nash B, Thomas R, Dormandy A (1991) Therapeutic aspects of white blood cell rheology in severe ischaemia of the leg. J Mal Vasc 16:32–34Google Scholar
  25. Omlor W, Bertram H, Kleinschmidt K, Fischer J, Brohm K, Guehring T, Richter W (2010) Methods to monitor distribution and metabolic activity of mesenchymal stem cells following in vivo injection into nucleotomized porcine intervertebral discs. Eur Spine J 19:601–612CrossRefGoogle Scholar
  26. Rastegar F, Shenaq D, Huang J, Zhang W, Zhang Q, He C, He C (2010) Mesenchymal stem cells: molecular characteristics and clinical applications. World J Stem Cells 2:67–80CrossRefGoogle Scholar
  27. Reddy M, Kwak K, Shim J, Jang C, Park J, Park E, Ahn C (2013) A long-term outcome of therapeutic angiogenesis by transplantation of peripheral blood stem cells in critical limb ischemia after interventional revascularization. Diagn Interv Radiol 19:76–80Google Scholar
  28. Ruiz-Salmeron R, de la Cuesta-Diaz A, Constantino-Bermejo M, Perez-Camacho I, Marcos-Sanchez F, Hmadcha A, Soria B (2011) Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplant 20:1629–1639CrossRefGoogle Scholar
  29. Smadja M, Laurendeau I, Avignon C, Vidaud M, Aiach M, Gaussem P (2006) The angiopoietin pathway is modulated by PAR-1 activation on human endothelial progenitor cells. J Thromb Haemost 4:2051–2058CrossRefGoogle Scholar
  30. Suzuki H, Iso Y (2013) Clinical application of vascular regenerative therapy for peripheral artery disease. Biomed Res Int 2013:179730CrossRefGoogle Scholar
  31. Zhang H, Li M, Li Y, Zhao P, Jing L (2008) Effects of different delivery routes of CD34+ stem cells on cardiac function in the ischemic cardiomyopathy of rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 20:214–217Google Scholar
  32. Zonta S, De Martino M, Bedino G, Piotti G, Rampino T, Gregorini M, Alessiani M (2010) Which is the most suitable and effective route of administration for mesenchymal stem cell-based immunomodulation therapy in experimental kidney transplantation: endovenous or arterial? Transplant Proc 42:1336–1340CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ahmed M. Ismail
    • 1
  • Said M. Abdou
    • 2
  • Hassan Abdel Aty
    • 1
  • Adel H. Kamhawy
    • 1
  • Mohammed Elhinedy
    • 1
  • Mohammed Elwageh
    • 1
  • Atef Taha
    • 3
  • Amal Ezzat
    • 2
  • Hoda A. Salem
    • 4
  • Said Youssif
    • 5
  • Mohamed L. Salem
    • 6
  1. 1.Vascular Surgery UnitTanta UniversityTantaEgypt
  2. 2.Clinical Pathology DepartmentTanta UniversityTantaEgypt
  3. 3.Internal Medicine Department, Faculty of MedicineTanta UniversityTantaEgypt
  4. 4.Faculty of PharmacyAl-Azhar UniversityCairoEgypt
  5. 5.Faculty of MedicineAin Shams UniversityCairoEgypt
  6. 6.Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Center of Excellence in Cancer ResearchTanta UniversityTantaEgypt

Personalised recommendations