Advertisement

Cytotechnology

, Volume 68, Issue 4, pp 1585–1589 | Cite as

Comparative cytogenetic analysis of marine needlefishes (Beloniformes) from southern Brazil

  • Roger Raupp Cipriano
  • Rafael Bueno Noleto
  • Daniel Luis Zanella Kantek
  • Maria Cristina da Silva Cortinhas
  • Marta Margarete Cestari
Brief Report

Abstract

Cytogenetic studies have assisted in the taxonomic classification of organisms, especially those involving species with highly similar morphologic characteristics, or so-called cryptic species. Strongylura marina and Strongylura timucu collected from Paranaguá Bay, Paraná Coast in Southern Brazil are considered cryptic species, and the identification of interspecific variations based on the number and/or morphology of its chromosomes may serve as differentiating cytotaxonomic markers. Chromosomes of the two species were subjected to different banding and staining methods (C-, Ag-, and DAPI-CMA3), as well as chromosomal mapping of major rDNA (45S), revealed with an 18S probe by fluorescence in situ hybridization (FISH). The pattern of distribution of constitutive heterochromatin showed distinct features involving the pericentromeric and telomeric bands in both species. In S. marina, chromosome 1 represents the main species-specific marker, appearing almost entirely heterochromatic. In both species, the 45S rDNA is located at terminal region of the short arm of the chromosome 6, as detected by silver nitrate staining and FISH. Despite the apparent conserved diploid number of 48 chromosomes, data on the karyotype microstructure characterize the cytogenetic profile of the genus and may allow the establishment of cytotaxonomic and evolutionary inferences for these fishes.

Keywords

Ag-NORs C-band Karyotype FISH Marine teleosts 

Notes

Acknowledgments

We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Estado do Paraná for the financial support for this study.

References

  1. Affonso PRAM, Galetti PM (2005) Chromosomal diversification of reef fishes from genus Centropyge (Perciformes, Pomacanthidae). Genetica 123:227–233CrossRefGoogle Scholar
  2. Arai R (2011) Fish karyotypes: a check list. Springer, Tokyo, p 345CrossRefGoogle Scholar
  3. Araújo WC, Martinez PA, Molina WF (2010) Mapping of ribosomal DNA by FISH, EcoRI digestion and replication bands in the cardinal fish Apogon americanus (Perciformes). Cytologia 75:109–117CrossRefGoogle Scholar
  4. Born GG, Bertollo LAC (2000) An XX/XY sex chromosome system in a fish species, Hoplias malabaricus, with a polymorphic NOR-bearing X chromosome. Chromosome Res 8:111–118CrossRefGoogle Scholar
  5. Cipriano RR, Fenocchio AS, Artoni RF, Molina WF, Noleto RB, Kantek DLZ, Cestari MM (2008) Chromosomal studies of five species of the marine fishes from the Paranaguá Bay and the karyotypic diversity in the Marine Teleostei of the Brazilian Coast. Braz Arch Biol Technol 51:303–314CrossRefGoogle Scholar
  6. Collette BB (2003) Family belonidae bonaparte 1932—needlefishes. Calif Acad Sci Annot Checkl Fish 16:1–22Google Scholar
  7. Collette BB, Mcgowen GE, Parin NV, Mito S (1984) Beloniformes: development and relationships. In: Moser HG (ed) Ontogeny and systematics of fish: Am. Soc. Ichthyol. Herpetol. Spec. Publ. 1Google Scholar
  8. Dover GA (1986) Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet 2:159–165CrossRefGoogle Scholar
  9. Fenocchio AS, Venere PC, Cesar ACG, Dias AL, Bertollo LAC (1991) Short term culture from solid tissues of fishes. Caryologia 44:161–166CrossRefGoogle Scholar
  10. Galetti PM, Molina WF, Affonso PRAM, Aguilar CT (2006) Assessing genetic diversity of Brazilian reef fishes by chromosomal and DNA markers. Genetica 126:161–177CrossRefGoogle Scholar
  11. Gottlieb S, Esposito RE (1989) A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56:771–776CrossRefGoogle Scholar
  12. Goulding M, Carvalho ML (1984) Ecololgy of amazoniam needlefishes (Belonidae). Revista Brasileira de Zoologia 2:99–111Google Scholar
  13. Hatanaka T, Galetti PM (2004) Mapping of the 18S and 5S ribosomal RNA genes in the Prochilodus argenteus Agassiz, 1829 (Characiformes, Prochilodontidae). Genetica 12:239–244CrossRefGoogle Scholar
  14. Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developper a 1-step method. Experientia 36:1014–1015CrossRefGoogle Scholar
  15. Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biémont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigó R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quétier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957Google Scholar
  16. John B, King M, Schweizer D, Mendelak M (1985) Equilocality of heterochromatin distribution and heterochromatin heterogeneity in acridid grasshoppers. Chromosoma 91:185–200CrossRefGoogle Scholar
  17. Kantek DLZ, Vicari MR, Peres WAM, Cestari MM, Artoni RF, Bertollo LAC, Moreira-Filho O (2009) Chromosomal location and distribution of As51 satellite DNA in five species of the genus Astyanax (Teleostei, Characidae, Incertae sedis). J Fish Biol 75:408–421CrossRefGoogle Scholar
  18. Levan A, Fredga K, Sandberg A (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  19. Liao JC (2002) Swimming in needlefish (Belonidae): anguilliform locomotion with fins. J Exp Biol 205:2875–2884Google Scholar
  20. Mazzuchelli J, Martins C (2009) Genomic organization of repetitive DNAs in the cichlid fish Astronotus ocellatus. Genetica 136:461–469CrossRefGoogle Scholar
  21. Molina WF, Galetti PM (2007) Early replication banding in Leporinus species (Osteichthyes, Characiformes) bearing differentiated sex chromosomes (ZW). Genetica 130:153–160CrossRefGoogle Scholar
  22. Molina WF, Schmid M, Galetti PM (1998) Heterochromatin and sex chromosomes in the Neotropical fish genus Leporinus (Characiformes, Anastomidae). Cytobios 94:141–149Google Scholar
  23. Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14:820–828CrossRefGoogle Scholar
  24. Noleto RB, Vicari MR, Cestari MM, Artoni RF (2012) Variable B chromosomes frequencies between males and females of two species of pufferfishes (Tetraodontiformes). Rev Fish Biol Fish 22:343–349CrossRefGoogle Scholar
  25. Ohno S, Wolf U, Atkin NB (1968) Evolution from fish to mammals by gene duplication. Hereditas 59:169–187CrossRefGoogle Scholar
  26. Pastori MC, Cano J, Bertollo LAC, Fenocchio AS (1998) Cytogenetic study of two species needlefish (Belonidae) from Argentina. Ital J Zool 65:57–60CrossRefGoogle Scholar
  27. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938CrossRefGoogle Scholar
  28. Rish KK (1973) A preliminary report on the karyotypes of eighteen marine fishes. Res Bull Punjab Univ 24:161–162Google Scholar
  29. Rishi KK, Singh J (1982) Karyological studies on five estuarine fishes. Nucleus 25:178–180Google Scholar
  30. Saito Y, Edpalina RR, Abe S (2007) Isolation and characterization of salmonid telomeric and centromeric satellite DNA sequences. Genetica 131:157–166CrossRefGoogle Scholar
  31. Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324CrossRefGoogle Scholar
  32. Sczepanski TS, Noleto RB, Cestari MM, Artoni RF (2010) A comparative study of two marine catfish (Siluriformes, Ariidae): cytogenetic tools for determining cytotaxonomy and karyotype evolution. Micron 41:193–197CrossRefGoogle Scholar
  33. Srivastava MDL, Kaura P (1964) The structure and behaviour of chromosomes in six freshwater teleosts. Cellule 65:93–107Google Scholar
  34. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306CrossRefGoogle Scholar
  35. Vicari MR, Noleto RB, Artoni RF, Moreira-Filho O, Bertollo LAC (2008) Comparative cytogenetics among species of the Astyanax scabripinnis complex. Evolutionary and biogeographical inferences. Genet Mol Biol 31:173–179CrossRefGoogle Scholar
  36. Vicari MR, Nogaroto V, Noleto RB, Cestari MM, Cioffi MB, Almeida MC, Moreira-Filho O, Bertollo LA, Artoni RF (2010) Satellite DNA and chromosomes in neotropical fishes: methods, applications and perspectives. J Fish Biol 76:1094–1116Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Roger Raupp Cipriano
    • 1
  • Rafael Bueno Noleto
    • 2
  • Daniel Luis Zanella Kantek
    • 3
  • Maria Cristina da Silva Cortinhas
    • 4
  • Marta Margarete Cestari
    • 5
  1. 1.Departamento de Fitotecnia e Fitossanitarismo, Setor de Ciências AgráriasUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Departamento de BiologiaUniversidade Estadual do ParanáUnião da VitóriaBrazil
  3. 3.Taiamã Ecological StationInstituto Chico Mendes de Conservação da BiodiversidadeCáceresBrazil
  4. 4.Laboratório de Crustáceos Decápodes, Instituto de OceanografiaUniversidade Federal do Rio GrandeRio GrandeBrazil
  5. 5.Departamento de GenéticaUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations