Skip to main content
Log in

Implication of SUMO E3 ligases in nucleotide excision repair

  • JAACT Special Issue
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Post-translational modifications alter protein function to mediate complex hierarchical regulatory processes that are crucial to eukaryotic cellular function. The small ubiquitin-like modifier (SUMO) is an important post-translational modification that affects transcriptional regulation, nuclear localization, and the maintenance of genome stability. Nucleotide excision repair (NER) is a very versatile DNA repair system that is essential for protection against ultraviolet (UV) irradiation. The deficiencies in NER function remarkably increase the risk of skin cancer. Recent studies have shown that several NER factors are SUMOylated, which influences repair efficiency. However, how SUMOylation modulates NER has not yet been elucidated. In the present study, we performed RNAi knockdown of SUMO E3 ligases and found that, in addition to PIASy, the polycomb protein Pc2 affected the repair of cyclobutane pyrimidine dimers. PIAS1 affected both the removal of 6-4 pyrimidine pyrimidone photoproducts and cyclobutane pyrimidine dimers, whereas other SUMO E3 ligases did not affect the removal of either UV lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–467

    Article  CAS  Google Scholar 

  • Bergink S, Salomons FA, Hoogstraten D, Groothuis TA, de Waard H, Wu J, Yuan L, Citterio E, Houtsmuller AB, Neefjes J, Hoeijmakers JH, Vermeulen W, Dantuma NP (2006) DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A. Genes Dev 20:1343–1352

    Article  CAS  Google Scholar 

  • Biverstål A, Johansson F, Jenssen D, Erixon K (2008) Cyclobutane pyrimidine dimers do not fully explain the mutagenicity induced by UVA in Chinese hamster cells. Mutat Res 648:32–39

    Article  Google Scholar 

  • Bossis G, Melchior F (2006) SUMO: regulating the regulator. Cell Div 1:13

    Article  Google Scholar 

  • Budden T, Bowden NA (2013) The role of altered nucleotide excision repair and UVB-induced DNA damage in melanomagenesis. Int J Mol Sci 14:1132–1151

    Article  CAS  Google Scholar 

  • Capili AD, Lima CD (2007) Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways. Curr Opin Struct Biol 17:726–735

    Article  CAS  Google Scholar 

  • Coldiron BM (1992) Thinning of the ozone layer: facts and consequences. J Am Acad Dermatol 27:653–662

    Article  CAS  Google Scholar 

  • Fei J, Kaczmarek N, Luch A, Glas A, Carell T, Naegeli H (2011) Regulation of nucleotide excision repair by UV-DDB: prioritization of damage recognition to internucleosomal DNA. PLoS Biol 9:e1001183

    Article  CAS  Google Scholar 

  • Fitch ME, Nakajima S, Yasui A, Ford JM (2003) In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J Biol Chem 278:46906–46910

    Article  CAS  Google Scholar 

  • Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11:861–871

    Article  CAS  Google Scholar 

  • Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8:947–956

    Article  CAS  Google Scholar 

  • Groisman R, Polanowska J, Kuraoka I, Sawada J, Saijo M, Drapkin R, Kisselev AF, Tanaka K, Nakatani Y (2003) The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113:357–367

    Article  CAS  Google Scholar 

  • Ismail IH, Andrin C, McDonald D, Hendzel MJ (2010) BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J Cell Biol 191:45–60

    Article  CAS  Google Scholar 

  • Ismail IH, Gagné JP, Caron MC, McDonald D, Xu Z, Masson JY, Poirier GG, Hendzel MJ (2012) CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage. Nucleic Acids Res 40:5497–5510

    Article  CAS  Google Scholar 

  • Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382

    Article  CAS  Google Scholar 

  • Klein UR, Nigg EA (2009) SUMO-dependent regulation of centrin-2. J Cell Sci 122:3312–3321

    Article  CAS  Google Scholar 

  • Li S (2012) Implication of posttranslational histone modifications in nucleotide excision repair. Int J Mol Sci 13:12461–12486

    Article  CAS  Google Scholar 

  • Moschos SJ, Mo YY (2006) Role of SUMO/Ubc9 in DNA damage repair and tumorigenesis. J Mol Histol 37:309–319

    Article  CAS  Google Scholar 

  • Pines A, Vrouwe MG, Marteijn JA, Typas D, Luijsterburg MS, Cansoy M, Hensbergen P, Deelder A, de Groot A, Matsumoto S, Sugasawa K, Thoma N, Vermeulen W, Vrieling H, Mullenders L (2012) PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J Cell Biol 199:235–249

    Article  CAS  Google Scholar 

  • Psakhye I, Jentsch S (2012) Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 151:807–820

    Article  CAS  Google Scholar 

  • Rodriguez MS, Dargemont C, Hay RT (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276:12654–12659

    Article  CAS  Google Scholar 

  • Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275:6252–6258

    Article  CAS  Google Scholar 

  • Schuch AP, Garcia CC, Makita K, Menck CF (2013) DNA damage as a biological sensor for environmental sunlight. Photochem Photobiol Sci 12:1259–1272

    Article  CAS  Google Scholar 

  • Silver HR, Nissley JA, Reed SH, Hou YM, Johnson ES (2011) A role for SUMO in nucleotide excision repair. DNA Repair (Amst) 10:1243–1251

    Article  CAS  Google Scholar 

  • Sugasawa K, Okuda Y, Saijo M, Nishi R, Matsuda N, Chu G, Mori T, Iwai S, Tanaka K, Tanaka K, Hanaoka F (2005) UV-induced ubiquitylation of XPC protein mediated by UV-DDB–ubiquitin ligase complex. Cell 121:387–400

    Article  CAS  Google Scholar 

  • Tempé D, Piechaczyk M, Bossis G (2008) SUMO under stress. Biochem Soc Trans 36:874–878

    Article  Google Scholar 

  • Tsuge M, Masuda Y, Kaneoka H, Kidani S, Miyake K, Iijima S (2013) SUMOylation of damaged DNA-binding protein DDB2. Biochem Biophys Res Commun 438:26–31

    Article  CAS  Google Scholar 

  • Vertegaal AC, Andersen JS, Ogg SC, Hay RT, Mann M, Lamond AI (2006) Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol Cell Proteomics 5:2298–2310

    Article  CAS  Google Scholar 

  • Wakasugi M, Kawashima A, Morioka H, Linn S, Sancar A, Mori T, Nikaido O, Matsunaga T (2002) DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J Biol Chem 277:1637–1640

    Article  CAS  Google Scholar 

  • Wang QE, Zhu Q, Wani G, El-Mahdy MA, Li J, Wani AA (2005) DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation. Nucleic Acids Res 33:4023–4034

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Kaneoka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuge, M., Kaneoka, H., Masuda, Y. et al. Implication of SUMO E3 ligases in nucleotide excision repair. Cytotechnology 67, 681–687 (2015). https://doi.org/10.1007/s10616-014-9762-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-014-9762-8

Keywords

Navigation