Skip to main content
Log in

Optimization of agitation speed in spinner flask for microcarrier structural integrity and expansion of induced pluripotent stem cells

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

In recent times, the study and use of induced pluripotent stem cells (iPSC) have become important in order to avoid the ethical issues surrounding the use of embryonic stem cells. Therapeutic, industrial and research based use of iPSC requires large quantities of cells generated in vitro. Mammalian cells, including pluripotent stem cells, have been expanded using 3D culture, however current limitations have not been overcome to allow a uniform, optimized platform for dynamic culture of pluripotent stem cells to be achieved. In the current work, we have expanded mouse iPSC in a spinner flask using Cytodex 3 microcarriers. We have looked at the effect of agitation on the microcarrier survival and optimized an agitation speed that supports bead suspension and iPS cell expansion without any bead breakage. Under the optimized conditions, the mouse iPSC were able to maintain their growth, pluripotency and differentiation capability. We demonstrate that microcarrier survival and iPS cell expansion in a spinner flask are reliant on a very narrow range of spin rates, highlighting the need for precise control of such set ups and the need for improved design of more robust systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbasalizadeh S, Larijani MR, Samadian A, Baharvand H (2012) Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tissue Eng Part C Methods 18:831–851. doi:10.1089/ten.TEC.2012.0161

    Article  CAS  Google Scholar 

  • Abranches E, Bekman E, Henrique D, Cabral JM (2007) Expansion of mouse embryonic stem cells on microcarriers. Biotechnol Bioeng 96:1211–1221. doi:10.1002/bit.21191

    Article  CAS  Google Scholar 

  • Alfred R, Radford J, Fan J, Boon K, Krawetz R, Rancourt D, Kallos MS (2011) Efficient suspension bioreactor expansion of murine embryonic stem cells on microcarriers in serum-free medium. Biotechnol Prog 27:811–823. doi:10.1002/btpr.591

    Article  CAS  Google Scholar 

  • Bardy J, Chen AK, Lim YM, Wu S, Wei S, Weiping H, Chan K, Reuveny S, Oh SK (2013) Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells. Tissue Eng Part C Methods 19:166–180. doi:10.1089/ten.TEC.2012.0146

    Article  CAS  Google Scholar 

  • Chen AK, Chen X, Choo AB, Reuveny S, Oh SK (2011) Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res 7:97–111. doi:10.1016/j.scr.2011.04.007

    Article  CAS  Google Scholar 

  • Cormier JT, Nieden NIZ, Rancourt DE, Kallos MS (2006) Expansion of undifferentiated murine embryonic stem cells as aggregates in suspension culture bioreactors. Tissue Eng 12:3233–3245. doi:10.1089/ten.2006.12.3233

    Article  CAS  Google Scholar 

  • Dusting J, Sheridan J, Hourigan K (2006) A fluid dynamics approach to bioreactor design for cell and tissue culture. Biotechnol Bioeng 94:1196–1208. doi:10.1002/bit.20960

    Article  CAS  Google Scholar 

  • Fernandes AM, Fernandes TG, Diogo MM, da Silva CL, Henrique D, Cabral JM (2007) Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. J Biotechnol 132:227–236. doi:10.1016/j.jbiotec.2007.05.031

    Article  CAS  Google Scholar 

  • Fernandes AM, Marinho PA, Sartore RC, Paulsen BS, Mariante RM, Castilho LR, Rehen SK (2009) Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Braz J Med Biol Res 42(6):515–522

    Article  CAS  Google Scholar 

  • Fluri DA, Tonge PD, Song H, Baptista RP, Shakiba N, Shukla S, Clarke G, Nagy A, Zandstra PW (2012) Derivation, expansion and differentiation of induced pluripotent stem cells in continuous suspension cultures. Nat Methods 9:509–516. doi:10.1038/nmeth.1939

    Article  CAS  Google Scholar 

  • Fok EY, Zandstra PW (2005) Shear-controlled single-step mouse embryonic stem cell expansion and embryoid body-based differentiation. Stem Cells 23:1333–1342. doi:10.1634/stemcells.2005-0112

    Article  CAS  Google Scholar 

  • Ismadi MZ, Higgins S, Samarage CR, Paganin D, Hourigan K, Fouras A (2013) Optimisation of a stirred bioreactor through the use of a novel holographic correlation velocimetry flow measurement technique. PLoS ONE 8:e65714. doi:10.1371/journal.pone.0065714

    Article  CAS  Google Scholar 

  • Ismadi ZM, Gupta P, Fouras A, Verma P, Jadhav S, Bellare J, Hourigan K (2014) Flow characterization of spinner flask for induced pluripotent stem cell culture application. Plos One (Submitted)

  • Kehoe DE, Jing D, Lock LT, Tzanakakis ES (2010) Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng Part A 16:405–421. doi:10.1089/ten.TEA.2009.0454

    Article  CAS  Google Scholar 

  • Krawetz R, Taiani JT, Liu S, Meng G, Li X, Kallos MS, Rancourt DE (2010) Large-scale expansion of pluripotent human embryonic stem cells in stirred-suspension bioreactors. Tissue Eng Part C Methods 16:573–582. doi:10.1089/ten.TEC.2009.0228

    Article  CAS  Google Scholar 

  • Leung HW, Chen A, Choo AB, Reuveny S, Oh SK (2011) Agitation can induce differentiation of human pluripotent stem cells in microcarrier cultures. Tissue Eng Part C Methods 17:165–172. doi:10.1089/ten.TEC.2010.0320

    Article  CAS  Google Scholar 

  • Lock LT, Tzanakakis ES (2009) Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Eng Part A 15:2051–2063. doi:10.1089/ten.tea.2008.0455

    Article  CAS  Google Scholar 

  • Marinho PA, Fernandes AM, Cruz JC, Rehen SK, Castilho LR (2010) Maintenance of pluripotency in mouse embryonic stem cells cultivated in stirred microcarrier cultures. Biotechnol Prog 26:548–555. doi:10.1002/btpr.328

    CAS  Google Scholar 

  • Marinho PA, Vareschini DT, Gomes IC, Paulsen Bda S, Furtado DR, Castilho Ldos R, Rehen SK (2013) Xeno-free production of human embryonic stem cells in stirred microcarrier systems using a novel animal/human-component-free medium. Tissue Eng Part C Methods 19:146–155. doi:10.1089/ten.TEC.2012.0141

    Article  CAS  Google Scholar 

  • Meunier P, Hourigan K (2013) Mixing in a vortex breakdown flow. J Fluid Mech 731:195–222. doi:10.1017/jfm.2013.226

    Article  CAS  Google Scholar 

  • Nie Y, Bergendahl V, Hei DJ, Jones JM, Palecek SP (2009) Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog 25:20–31. doi:10.1002/btpr.110

    Article  CAS  Google Scholar 

  • Oh SK, Chen AK, Mok Y, Chen X, Lim UM, Chin A, Choo AB, Reuveny S (2009) Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res 2:219–230. doi:10.1016/j.scr.2009.02.005

    Article  CAS  Google Scholar 

  • Olmer R, Haase A, Merkert S, Cui W, Palecek J, Ran C, Kirschning A, Scheper T, Glage S, Miller K, Curnow EC, Hayes ES, Martin U (2010) Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res 5:51–64. doi:10.1016/j.scr.2010.03.005

    Article  CAS  Google Scholar 

  • Olmer R, Lange A, Selzer S, Kasper C, Haverich A, Martin U, Zweigerdt R (2012) Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Eng Part C Methods 18:772–784. doi:10.1089/ten.TEC.2011.0717

    Article  CAS  Google Scholar 

  • Phillips BW, Horne R, Lay TS, Rust WL, Teck TT, Crook JM (2008) Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol 138:24–32. doi:10.1016/j.jbiotec.2008.07.1997

    Article  CAS  Google Scholar 

  • Serra M, Brito C, Sousa MF, Jensen J, Tostoes R, Clemente J, Strehl R, Hyllner J, Carrondo MJ, Alves PM (2010) Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. J Biotechnol 148:208–215. doi:10.1016/j.jbiotec.2010.06.015

    Article  CAS  Google Scholar 

  • Shafa M, Sjonnesen K, Yamashita A, Liu S, Michalak M, Kallos MS, Rancourt DE (2012) Expansion and long-term maintenance of induced pluripotent stem cells in stirred suspension bioreactors. J Tissue Eng Regen Med 6:462–472. doi:10.1002/term.450

    Article  CAS  Google Scholar 

  • Steiner D, Khaner H, Cohen M, Even-Ram S, Gil Y, Itsykson P, Turetsky T, Idelson M, Aizenman E, Ram R, Berman-Zaken Y, Reubinoff B (2010) Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol 28:361–364. doi:10.1038/nbt.1616

    Article  CAS  Google Scholar 

  • Storm MP, Orchard CB, Bone HK, Chaudhuri JB, Welham MJ (2010) Three-dimensional culture systems for the expansion of pluripotent embryonic stem cells. Biotechnol Bioeng 107:683–695. doi:10.1002/bit.22850

    Article  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  Google Scholar 

  • Tat PA, Sumer H, Jones KL, Upton K, Verma PJ (2010) The efficient generation of induced pluripotent stem (iPS) cells from adult mouse adipose tissue-derived and neural stem cells. Cell Transplant 19:525–536. doi:10.3727/096368910X491374

    Article  Google Scholar 

  • Thouas GA, Sheridan J, Hourigan K (2007) A bioreactor model of mouse tumor progression. J Biomed Biotechnol 2007:32754. doi:10.1155/2007/32754

    Article  Google Scholar 

  • Tielens S, Declercq H, Gorski T, Lippens E, Schacht E, Cornelissen M (2007) Gelatin-based microcarriers as embryonic stem cell delivery system in bone tissue engineering: an in vitro study. Biomacromolecules 8:825–832. doi:10.1021/bm060870u

    Article  CAS  Google Scholar 

  • Want AJ, Nienow AW, Hewitt CJ, Coopman K (2012) Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: beyond the T flask. Regen Med 7:71–84. doi:10.2217/rme.11.101

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge Ms. Joan Clark, Monash Micro Imaging Facility (Monash University), for helping with the SEM imaging, Dr. Trevor Wilson, Medical Genomics Facility, Monash Health and Technology Precinct, for his help in the Array Scan analysis, and Ms. Karla Contreras, Division of Biological Engineering (Monash University) for her assistance. This work was supported by the Australian Research Council Discovery Program (Grant DPDP130100822) and by the Australia India Strategic Research Fund (Grant BF050038).

Conflict of interest

The authors declare that no competing financial interests exist for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Ismadi, MZ., Verma, P.J. et al. Optimization of agitation speed in spinner flask for microcarrier structural integrity and expansion of induced pluripotent stem cells. Cytotechnology 68, 45–59 (2016). https://doi.org/10.1007/s10616-014-9750-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-014-9750-z

Keywords

Navigation