Skip to main content
Log in

Medium composition for effective slow freezing of embryonic cell lines derived from marine medaka (Oryzias dancena)

  • Brief Report
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

This study was conducted to identify optimal medium composition for freezing Oryzias dancena embryonic cell lines. Different freezing media consisting of various concentration of dimethyl sulfoxide (DMSO), fetal bovine serum (FBS), and trehalose were prepared and long-term cultured embryonic cell line was frozen in each freezing medium by conventional slow freezing program for 7 days. Through measurement of viability and growth of post-thaw cells frozen in each freezing medium, it was determined that optimal composition of three components was 10 % DMSO, 20 % FBS, and 0.1 M trehalose. The post-thaw cells frozen in optimal freezing medium showed similar morphology and growth rate with non-frozen cells. Next, this condition was applied to two different sets of experiment; (1) freezing of the same cells during expanded period (57 days) and (2) freezing of short-term cultured cells from other batches for 7 days. The viability of post-thaw cells was significantly low and comparable in set 1 and 2, respectively, when compared with the result of long term-cultured cells frozen in optimal freezing medium for 7 days and similar morphology and growth rate with non-frozen counterparts were detected in the post-thaw cells from both sets. In conclusion, this study first reports the optimal medium composition for freezing O. dancena embryonic cells, which can contribute to fish species preservation as well as improvement of cell-based biotechnology by providing stable cell storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aboagla EM, Terada T (2003) Trehalose-enhanced fluidity of the goal sperm membrane and its protection during freezing. Biol Reprod 69:1245–1250

    Article  CAS  Google Scholar 

  • Bail PY, Depince A, Chenais N, Mahe S, Maisse G, Labbe C (2010) Optimization of somatic cell injection in the perspective of nuclear transfer in goldfish. BMC Dev Biol 8:64

    Article  CAS  Google Scholar 

  • Bork S, Pfister S, Witt H, Horn P, Korn B, Ho AD, Wagner W (2010) DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell 9:54–63

    Article  CAS  Google Scholar 

  • Brayton CF (1986) Dimethyl sulfoxide (DMSO): a review. Cornell Vet 76:61–90

    CAS  Google Scholar 

  • Cabrita E, Ma S, Diogo P, Martínez-Páramo S, Sarasquete C, Dinis MT (2011) The influence of certain aminoacids and vitamins on post-thaw fish sperm motility, viability and DNA fragmentation. Anim Reprod Sci 125:189–195

    Article  CAS  Google Scholar 

  • Carpenter JF, Hansen TN (1992) Antifreeze protein modulates cell survival during cryopreservation: mediation through influence on ice crystal growth. Proc Natl Acad Sci U S A 89:8953–8957

    Article  CAS  Google Scholar 

  • Chao NH, Liao IC (2001) Cryopreservation of finfish and shellfish gametes and embryos. Aquaculture 197:161–189

    Article  Google Scholar 

  • Chao H, Davies PL, Carpenter JF (1996) Effects of antifreeze proteins on red blood cell survival during cryopreservation. J Exp Biol 199:2071–2076

    CAS  Google Scholar 

  • Dash SN, Routray P, Dash C, Guru BC, Swain P, Sarangi N (2008) Use of the non-toxic cryoprotectant trehalose enhances recovery and function of fish embryonic stem cells following cryogenic storage. Curr Stem Cell Res Ther 3:277–287

    Article  CAS  Google Scholar 

  • Eroglu A, Toth TL, Toner M (2001) Cryoprotection of mouse and human oocytes by intracellular trehalose. Cryobiology 43:320

    Google Scholar 

  • Freimark D, Sehl C, Weber C, Hudel K, Czermak P, Hofmann N, Spindler R, Glasmacher B (2011) Systematic parameter optimization of a Me2SO- and serum-free cryopreservation protocol for human mesenchymal stem cells. Cryobiology 63:67–75

    Article  CAS  Google Scholar 

  • Fuku E, Kojima T, Shioya Y, Marcus GJ, Downey BR (1992) In Vitro fertilization and development of frozen-thawed bovine oocyte. Cryobiology 29:485–492

    Article  CAS  Google Scholar 

  • Gutteridge JM, Quinlan GJ (1993) Antioxidant protection against organic and inorganic oxygen radicals by normal human plasma: the important primary role for iron-binding and iron-oxidising proteins. Biochim Biophys Acta 1156:144–150

    Article  CAS  Google Scholar 

  • Higaki S, Kawakami Y, Eto Y, Yamaha E, Nagano M, Katagiri S, Takada T, Takahashi Y (2013) Cryopreservation of zebrafish (Danio rerio) primordial germ cells by vitrification of yolk-intact and yolk-depleted embryos using various cryoprotectant solutions. Cryobiology 67:374–382

    Article  CAS  Google Scholar 

  • Hunt CJ (2011) Cryopreservation of human stem cells for clinical application: a review. Transfus Med Hemother 38:107–123

    Article  Google Scholar 

  • Kanatsu-Shinohara M, Ogonuki N, Iwano T, Lee J, Kazuki Y, Inoue K, Miki H, Takehashi M, Toyokuni S, Shinkai Y, Oshimura M, Ishino F, Ogura A, Shinohara T (2005) Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development 132:4155–4163

    Article  CAS  Google Scholar 

  • Katsuda S, Okada Y, Nakanishi I (1987) Dimethyl sulfoxide induces microtubule formation in cultured arterial smooth muscle cells. Cell Biol Int Rep 11:103–110

    Article  CAS  Google Scholar 

  • Kobayashi T, Takeuchi Y, Takeuchi T, Yoshizaki G (2007) Generation of viable fish from cryopreserved primordial germ cells. Mol Reprod Dev 74:207–213

    Article  CAS  Google Scholar 

  • Kopeika J, Zhang T, Rawson DM, Elgar G (2005) Effect of cryopreservation on mitochondrial DNA of zebrafish (Danio rerio) blastomere cells. Mutat Res 570:49–61

    Article  CAS  Google Scholar 

  • Lee JE, Lee DR (2011) Human embryonic stem cells: derivation, maintenance and cryopreservation. Int J Stem Cells 4:9–17

    Article  CAS  Google Scholar 

  • Lee D, Kim MS, Nam YK, Kim DS, Gong SP (2013a) Establishment and characterization of permanent cell lines from Oryzias dancena embryos. Fish Aquat Sci 16:177–185

    Google Scholar 

  • Lee YA, Kim YH, Kim BJ, Jung MS, Auh JH, Seo JT, Park YS, Lee SH, Ryu BY (2013b) Cryopreservation of mouse spermatogonial stem cells in dimethylsulfoxide and polyethylene glycol. Biol Reprod 89:109. doi:10.1095/biolreprod.113.111195

    Article  CAS  Google Scholar 

  • Lee YA, Kim YH, Kim BJ, Kim BG, Kim KJ, Auh JH, Schmidt JA, Ryu BY (2013c) Cryopreservation in trehalose preserves functional capacity of murine spermatogonial stem cells. PLoS ONE 8:e54889. doi:10.1371/journal.pone.0054889

    Article  CAS  Google Scholar 

  • Marco-Jiménez F, Garzón DL, Peñaranda DS, Pérez L, Viudes-de-Castro MP, Vicente JS, Jover M, Asturiano JF (2006) Cryopreservation of European eel (Anguilla anguilla) spermatozoa: effect of dilution ratio, foetal bovine serum supplementation, and cryoprotectants. Cryobiology 53:51–57

    Article  CAS  Google Scholar 

  • Martínez-Páramo S, Diogo P, Dinis MT, Soares F, Sarasquete C, Cabrita E (2013) Effect of two sulfur-containing amino acids, taurine and hypotaurine in European sea bass (Dicentrarchus labrax) sperm cryopreservation. Cryobiology 66:333–338

    Article  CAS  Google Scholar 

  • Mauger PE, Le Bail PY, Labbé C (2006) Cryobanking of fish somatic cells: optimizations of fin explant culture and fin cell cryopreservation. Comp Biochem Physiol B: Biochem Mol Biol 144:29–37

    Article  CAS  Google Scholar 

  • Mazur P (1988) Stopping biological time. The freezing of living cells. Ann N Y Acad Sci 541:514–531

    Article  CAS  Google Scholar 

  • Miranda AF, Nette G, Khan S, Brockbank KGM, Schonberg M (1978) Alteration of myoblast phenotype by dimethylsulfoxide. Proc Natl Acad Sci USA 75:3826–3830

    Article  CAS  Google Scholar 

  • Morgan CA, Herman N, White PA, Vesey G (2006) Preservation of micro-organisms by drying: a review. J Microbiol Methods 66:183–193

    Article  CAS  Google Scholar 

  • Naaldijk Y, Staude M, Fedorova V, Stolzing A (2012) Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide. BMC Biotechnol 12:49. doi:10.1186/1472-6750-12-49

    Article  CAS  Google Scholar 

  • Ock SA, Rho GJ (2011) Effect of dimethyl sulfoxide (DMSO) on cryopreservation of porcine mesenchymal stem cells (pMSCs). Cell Transplant 20:1231–1239

    Article  Google Scholar 

  • Okutsu T, Yano A, Nagasawa K, Shikina S, Kobayashi T, Takeuchi Y, Yoshizaki G (2006) Manipulation of fish germ cell: visualization, cryopreservation and transplantation. J Reprod Dev 52:685–693

    Article  Google Scholar 

  • Rudolph AS, Crowe JH (1985) Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 22:367–377

    Article  CAS  Google Scholar 

  • Setioko AR, Tagami T, Tase H, Nakamura Y, Takeda K, Nirasawa K (2007) Cryopreservation of primordial germ cells (PGCs) from white leghorn embryos using commercial cryoprotectants. J Poult Sci 44:73–77

    Article  Google Scholar 

  • Strussmann CA, Nakatsugawa H, Takashima F, Hasobe M, Suzuki T, Takai R (1999) Cryopreservation of isolated fish blastomeres: effects of cell stage, cryoprotectant concentration, and cooling rate on postthawing survival. Cryobiology 39:252–261

    Article  CAS  Google Scholar 

  • Tuncer PB, Bucak MN, Büyükleblebici S, Sarıözkan S, Yeni D, Eken A, Akalın PP, Kinet H, Avdatek F, Fidan AF, Gündoğan M (2010) The effect of cysteine and glutathione on sperm and oxidative stress parameters of post-thawed bull semen. Cryobiology 61:303–307

    Article  CAS  Google Scholar 

  • Uchendu EE, Leonard SW, Traber MG, Reed BM (2010) Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep 29:25–35

    Article  CAS  Google Scholar 

  • Yan Y, Hong N, Chen T, Li M, Wang T, Guan G, Qiao Y, Chen S, Schartl M, Li CM, Hong Y (2013) p53 gene targeting by homologous recombination in fish ES cells. PLoS ONE 8:e59400. doi:10.1371/journal.pone.0059400

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A1011572).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Pyo Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.S., Lee, S.T., Lim, J.M. et al. Medium composition for effective slow freezing of embryonic cell lines derived from marine medaka (Oryzias dancena). Cytotechnology 68, 9–17 (2016). https://doi.org/10.1007/s10616-014-9749-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-014-9749-5

Keywords

Navigation