Advertisement

Cytotechnology

, Volume 67, Issue 5, pp 905–919 | Cite as

Xeno-free chondrogenesis of bone marrow mesenchymal stromal cells: towards clinical-grade chondrocyte production

  • Maria Skog
  • Virpi Muhonen
  • Johanna Nystedt
  • Roberto Narcisi
  • Leena-Stiina Kontturi
  • Arto Urtti
  • Matti Korhonen
  • Gerjo J. V. M. van Osch
  • Ilkka Kiviranta
Method in Cell Science

Abstract

Current cell-based cartilage therapies relay on articular cartilage-derived autologous chondrocytes as a cell source, which possesses disadvantages, such as, donor site morbidity and dedifferentiation of chondrocytes during in vitro expansion. Due to these and other limitations, novel cell sources and production strategies are needed. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are a fascinating alternative, but they are not spontaneously capable of producing hyaline cartilage-like repair tissue in vivo. In vitro pre-differentiation of BM-MSCs could be used to produce chondrocytes for clinical applications. However, clinically compatible defined and xeno-free differentiation protocol is lacking. Hence, this study aimed to develop such chondrogenic differentiation medium for human BM-MSCs. We assessed the feasibility of the medium using three human BM-MSCs donors and validated the method by comparing BM-MSCs to three other cell types holding potential for articular cartilage repair. The effectiveness of the method was compared to conventional serum-free and commercially available chondrogenic differentiation media. The results show that the defined xeno-free differentiation medium is at least as efficient as conventionally used serum-free chondrogenic medium and performed significantly better on all cell types tested compared to the commercially available chondrogenic medium.

Keywords

Mesenchymal stromal cells Xeno-free Clinical grade Chondrogenesis 

Notes

Acknowledgments

The authors wish to acknowledge the European Science Foundation’s Regenerative Medicine (REMEDIC) activity, the Maud Kuistila Memorial Foundation and the Emil Aaltonen Foundation for their financial support (V.M.). Viikki Doctoral Programme in Molecular Biosciences (VGSB) is acknowledged for financial support (M.S.). The hACs and hES-MPs were kindly provided by Professor Anders Lindahl (Sahlgrenska University Hospital, Gothenburg, Sweden). Hannu Kautiainen, BA, and Salme Järvenpää, MSc, are acknowledged for their valuable contribution for the statistical analysis (MedCare Ltd, Äänekoski, Finland). The authors thank Sirkka Hirschovits-Gerz for excellent technical assistance with BM-MSC culture (Finnish Red Cross Blood Service, Helsinki, Finland).

References

  1. Afizah H, Yang Z, Hui JH, Quyang HW, Lee EH (2007) A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng 13:659–666CrossRefGoogle Scholar
  2. Awad HA, Halvorsen YD, Gimble JM (2003) Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng 9:1301–1312CrossRefGoogle Scholar
  3. Barry F, Boynton RE, Liu B, Murphy JM (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268:189–200CrossRefGoogle Scholar
  4. Bernardo ME, Emons JA, Karperien M, Nauta AJ, Willemze R, Roelofs H, Romeo S, Marchini A, Rappold GA, Vukicevic S, Locatelli F, Fibbe WE (2007) Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources. Connect Tissue Res 48:132–140CrossRefGoogle Scholar
  5. Bieback K, Hecker A, Kocaömer A, Schallmoser K, Strunk D, Klüter H (2009) Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells 27:2331–2341CrossRefGoogle Scholar
  6. Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D (2008) Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician 11:343–353Google Scholar
  7. Chang F, Ishii T, Yanai T, Mishima H, Akaogi H, Ogawa T, Ochiai N (2008) Repair of large full-thickness articular cartilage defects by transplantation of autologous uncultured bone-marrow-derived mononuclear cells. J Orthop Res 26:18–26CrossRefGoogle Scholar
  8. Chase LG, Yang S, Zachar V, Yang Z, Lakshmipathy U, Bradford J, Boucher SE, Vemuri MC (2012) Development and characterization of a clinically compliant xeno-free culture medium in good manufacturing practice for human multipotent mesenchymal stem cells. Stem Cells Transl Med 1:750–758CrossRefGoogle Scholar
  9. Cleary MA, van Osch GJ, Brama PA, Hellingman CA, Narcisi R (2013) FGF, TGFβ and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells. J Tissue Eng Regen Med. doi:  10.1002/term.1744 [Epub ahead of print]
  10. De Bari C, Dell’Accio F, Luyten FP (2004) Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum 50:142–150CrossRefGoogle Scholar
  11. Dell’Accio F, De Bari C, Luyten FP (2003) Microenvironment and phenotypic stability specify tissue formation by human articular cartilage-derived cells in vivo. Exp Cell Res 287:16–27CrossRefGoogle Scholar
  12. Dickhut A, Pelttari K, Janicki P, Wagner W, Eckstein V, Egermann M, Richter W (2009) Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. J Cell Physiol 219:219–226CrossRefGoogle Scholar
  13. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317CrossRefGoogle Scholar
  14. Doucet C, Ernou I, Zhang Y, Llense JR, Begot L, Holy X, Lataillade JJ (2005) Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol 205:228–236CrossRefGoogle Scholar
  15. Farrell E, van der Jagt OP, Koevoet W, Kops N, van Manen CJ, Hellingman CA, Jahr H, O’Brien FJ, Verhaar JA, Weinans H, van Osch GJ (2009) Chondrogenic priming of human bone marrow stromal cells: a better route to bone repair? Tissue Eng Part C Methods 15:285–295CrossRefGoogle Scholar
  16. Gelse K, Ekici AB, Cipa F, Swoboda B, Carl HD, Olk A, Hennig FF, Klinger P (2012) Molecular differentiation between osteophytic and articular cartilage–clues for a transient and permanent chondrocyte phenotype. Osteoarthr Cartil 20:162–171CrossRefGoogle Scholar
  17. Grayson WL, Bhumiratana S, Grace Chao PH, Hung CT, Vunjak-Novakovic G (2010) Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Osteoarthr Cartil 18:714–723CrossRefGoogle Scholar
  18. Heiskanen A, Satomaa T, Tiitinen S, Laitinen A, Mannelin S, Impola U, Mikkola M, Olsson C, Miller-Podraza H, Blomqvist M, Olonen A, Salo H, Lehenkari P, Tuuri T, Otonkoski T, Natunen J, Saarinen J, Laine J (2007) N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells 25:197–202CrossRefGoogle Scholar
  19. Hellingman CA, Koevoet W, Kops N, Farrell E, Jahr H, Liu W, Baatenburg de Jong RJ, Frenz DA, van Osch GJ (2010) Fibroblast growth factor receptors in in vitro and in vivo chondrogenesis: relating tissue engineering using adult mesenchymal stem cells to embryonic development. Tissue Eng Part A 16:545–556CrossRefGoogle Scholar
  20. Hennig T, Lorenz H, Thiel A, Goetzke K, Dickhut A, Geiger F, Richter W (2007) Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol 211:682–691CrossRefGoogle Scholar
  21. Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R (2003) Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am 85-A:185–192Google Scholar
  22. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937CrossRefGoogle Scholar
  23. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272CrossRefGoogle Scholar
  24. Karlsson C, Emanuelsson K, Wessberg F, Kajic K, Axell MZ, Eriksson PS, Lindahl A, Hyllner J, Strehl R (2009) Human embryonic stem cell-derived mesenchymal progenitors–potential in regenerative medicine. Stem Cell Res 3:39–50CrossRefGoogle Scholar
  25. Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, Ohqushi H, Wakitani S, Kurosaka M (2007) Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthr Cartil 15:226–231CrossRefGoogle Scholar
  26. Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR (2007) Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 213:18–26CrossRefGoogle Scholar
  27. Larson BL, Ylöstalo J, Prockop DJ (2008) Human multipotent stromal cells undergo sharp transition from division to development in culture. Stem Cells 26:193–201CrossRefGoogle Scholar
  28. Lee S, Kim JH, Jo CH, Seong SC, Lee JC, Lee MC (2009) Effect of serum and growth factors on chondrogenic differentiation of synovium-derived stromal cells. Tissue Eng Part A 15:3401–3415CrossRefGoogle Scholar
  29. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4:415–428CrossRefGoogle Scholar
  30. Marquass B, Schulz R, Hepp P, Zscharnack M, Aigner T, Schmidt S, Stein F, Richter R, Osterhoff G, Aust G, Josten C, Bader A (2011) Matrix-associated implantation of pre-differentiated mesenchymal stem cells versus articular chondrocytes: in vivo results of cartilage repair after 1 year. Am J Sports Med 39:1401–1412CrossRefGoogle Scholar
  31. Matricali GA, Dereymaeker GP, Luyten FP (2010) Donor site morbidity after articular cartilage repair procedures: a review. Acta Orthop Belg 76:669–674Google Scholar
  32. Mitkari B, Kerkelä E, Nystedt J, Korhonen M, Mikkonen V, Huhtala T, Jolkkonen J (2013) Intra-arterial infusion of human bone marrow-derived mesenchymal stem cells results in transient localization in the brain after cerebral ischemia in rats. Exp Neurol 239:158–162CrossRefGoogle Scholar
  33. Miwa H, Hashimoto Y, Tensho K, Wakitani S, Takagi M (2012) Xeno-free proliferation of human bone marrow mesenchymal stem cells. Cytotechnology 64:301–308CrossRefGoogle Scholar
  34. Moore H (2006) The medium is the message. Nat Biotechnol 24:160–161CrossRefGoogle Scholar
  35. Mrugala D, Bony C, Neves N, Caillot L, Fabre S, Moukoko D, Jorgensen C, Noël D (2008) Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Ann Rheum Dis 67:288–295CrossRefGoogle Scholar
  36. Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH (2010) Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38:1110–1116CrossRefGoogle Scholar
  37. Nystedt J, Anderson H, Hirvonen T, Impola U, Jaatinen T, Heiskanen A, Blonqvist M, Satomaa T, Natunen J, Saarinen J, Lehenkari P, Valmu L, Laine J (2010) Human CMP-N-acetylneuraminic acid hydroxylase is a novel stem cell marker linked to stem cell-specific mechanisms. Stem Cells 28:258–267Google Scholar
  38. Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, Aigner T, Richter W (2006) Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 54:3254–3266CrossRefGoogle Scholar
  39. Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ (1999) Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75:424–436CrossRefGoogle Scholar
  40. Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP (2000) Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res 52:246–255CrossRefGoogle Scholar
  41. Rucklidge G, Milne G, Robins S (1996) Collagen type X: a component of normal human, pig, and rat articular cartilage. Biochem Biophys Res Commun 224:297–302CrossRefGoogle Scholar
  42. Sensebé L (2008) Clinical grade production of mesenchymal stem cells. Biomed Mater Eng 18:S3–S10Google Scholar
  43. Sensebé L, Bourin P (2009) Mesenchymal stem cells for therapeutic purposes. Transplantation 87:S49–S53CrossRefGoogle Scholar
  44. Sensebé L, Krampera M, Schrezenmeier H, Bourin P, Giordano R (2010) Mesenchymal stem cells for clinical application. Vox Sang 98:93–107CrossRefGoogle Scholar
  45. Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M (2006) Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24:462–471CrossRefGoogle Scholar
  46. Spees JL, Gregory CA, Singh H, Tucker HA, Peister A, Lynch PJ, Hsu SC, Smith J, Prockop DJ (2004) Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol Ther 9:747–756CrossRefGoogle Scholar
  47. Vasiliadis HS, Danielson B, Ljungberg M, McKeon B, Lindahl A, Peterson L (2010) Autologous chondrocyte implantation in cartilage lesions of the knee: long-term evaluation with magnetic resonance imaging and delayed gadolinium-enhanced magnetic resonance imaging technique. Am J Sports Med 38:943–949CrossRefGoogle Scholar
  48. Wachsmuth L, Söder S, Fan Z, Finger F, Aigner T (2006) Immunolocalization of matrix proteins in different human cartilage subtypes. Histol Histopathol 21:477–485Google Scholar
  49. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartil 10:199–206CrossRefGoogle Scholar
  50. Wakitani S, Mitsuoka T, Nakamura N, Toritsuka Y, Nakamura Y, Horibe S (2004) Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transpl 13:595–600CrossRefGoogle Scholar
  51. Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H (2007) Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med 1:74–79CrossRefGoogle Scholar
  52. Wakitani S, Okabe T, Horibe S, Mitsuoka T, Saito M, Koyama T, Nawata M, Tensho K, Kato H, Uematsu K, Kuroda R, Kurosaka M, Yoshiya S, Hattori K, Ohgushi H (2011) Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med 5:146–150CrossRefGoogle Scholar
  53. Yan H, Yu C (2007) Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthroscopy 23:178–187CrossRefGoogle Scholar
  54. Zscharnack M, Hepp P, Richter R, Aigner T, Schulz R, Somerson J, Josten C, Bader A, Marquass B (2010) Repair of chronic osteochondral defects using pre-differentiated mesenchymal stem cells in an ovine model. Am J Sports Med 38:1857–1869CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Maria Skog
    • 1
    • 2
  • Virpi Muhonen
    • 1
    • 3
  • Johanna Nystedt
    • 4
  • Roberto Narcisi
    • 5
  • Leena-Stiina Kontturi
    • 6
  • Arto Urtti
    • 6
  • Matti Korhonen
    • 4
  • Gerjo J. V. M. van Osch
    • 5
    • 7
  • Ilkka Kiviranta
    • 1
    • 3
  1. 1.Department of Surgery, Institute of Clinical MedicineUniversity of Helsinki, Biomedicum HelsinkiHelsinkiFinland
  2. 2.Division of Biochemistry and Biotechnology, Department of BiosciencesUniversity of HelsinkiHelsinkiFinland
  3. 3.Department of Orthopaedics and TraumatologyHospital District of Helsinki and UusimaaHelsinkiFinland
  4. 4.Advanced Therapies and Product DevelopmentFinnish Red Cross Blood ServiceHelsinkiFinland
  5. 5.Department of Orthopedics, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
  6. 6.Division of Biopharmacy and Pharmacokinetics, Centre for Drug ResearchUniversity of HelsinkiHelsinkiFinland
  7. 7.Department of Otorhinolaryngology, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands

Personalised recommendations