Skip to main content
Log in

Effect of matrine on primary human hepatocytes in vitro

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Matrine is a bioactive component of the traditional Chinese medical herb Sophora flavescens that has been used in China to treat various kinds of diseases including virus hepatitis. However, the molecular mechanisms underlying its hepatoprotective effects remains elusive. In the present study, primary human hepatocytes were employed to elucidate the protective effects and molecular mechanisms of matrine. We observed that low concentrations of matrine had no significant impact on albumin secretion, but high concentrations (>140 mg/L) of matrine decreased the albumin secretion in hepatocytes. Western blot data indicated that matrine at 140 mg/L at 72 h induced protein expression of CYP2A6, CYP2B6 and CYP3A4. Furthermore, high concentrations of matrine reduced LDH and AST levels and were cytotoxic to hepatocytes, leading to a decreased cell viability and total protein amount. Moreover, low concentrations of matrine, enhanced the ECOD activity and decreased the level of NO2 induced by cytokines in human hepatocytes. Taken together, the present study sheds novel light on the molecular mechanisms of matrine and potential application of matrine in hepatic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MA:

Matrine

ALT:

Alanine aminotransferase

AST:

Aspartate transaminase

CYP:

Cytochrome P

ECOD:

Ethoxycoumarin-O-deethylation

EROD:

Deethylation of ethoxyresorufin

GST:

Glutathione-S-transferase

LDH:

Lactate dehydrogenase

References

  • Akuta N, Suzuki F, Kobayashi M, Matsuda M, Sato J, Takagi K, Tsubota A, Suzuki Y, Hosaka T, Someya T, Saitoh S, Arase Y, Ikeda K, Kumada H (2003) Virological and biochemical relapse according to YMDD motif mutant type during long-term lamivudine monotherapy. J Med Virol 71:504–510

    Article  CAS  Google Scholar 

  • Baur H, Kasperek S, Pfaff E (1975) Criteria of viability of isolated liver cells. Hoppe Seylers Z Physiol Chem 356:827–838

    Article  CAS  Google Scholar 

  • Burke MD, Mayer RT (1974) Ethoxyresorufin: direct fluorimetric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methylcholanthrene. Drug Metab Dispos 2:583–588

    CAS  Google Scholar 

  • Burke MD, Orrenius S (1978) The effect of albumin on the metabolism of ethoxyresorufin through O-deethylation and sulphate-conjugation using isolated rat hepatocytes. Biochem Pharmacol 27:1533–1538

    Article  CAS  Google Scholar 

  • Carnovale CE, Scapini C, Alvarez ML, Favre C, Monti J, Carrillo MC (2000) Nitric oxide release and enhancement of lipid peroxidation in regenerating rat liver. J Hepatol 32:798–804

    Article  CAS  Google Scholar 

  • Dorko K, Freeswick PD, Bartoli F, Cicalese L, Bardsley BA, Tzakis A, Nussler AK (1994) A new technique for isolating and culturing human hepatocytes from whole or split livers not used for transplantation. Cell Transplant 3:387–395

    CAS  Google Scholar 

  • Dufour DR, Lott JA, Nolte FS, Gretch DR, Koff RS, Seeff LB (2000) Diagnosis and monitoring of hepatic injury. I. Performance characteristics of laboratory tests. Clin Chem 46:2027–2049

    CAS  Google Scholar 

  • Fontaine H, Pol S (2001) Side effects of interferon-alpha in treating hepatitis C virus infection. Transplant Proc 33:2327–2329

    Article  CAS  Google Scholar 

  • Fry JR, Wiebkin P, Bridges JW (1980) 7-Ethoxycoumarin O-deethylase induction by phenobarbitone and 1,2-benzanthracene in primary maintenance cultures of adult rat hepatocytes. Biochem Pharmacol 29:577–581

    Article  CAS  Google Scholar 

  • Frye RF, Zgheib NK, Matzke GR, Chaves-Gnecco D, Rabinovitz M, Shaikh OS, Branch RA (2006) Liver disease selectively modulates cytochrome P450–mediated metabolism. Clin Pharmacol Ther 80:235–245

    Article  CAS  Google Scholar 

  • Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, Guyomard C, Lucas J, Trepo C, Guguen-Guillouzo C (2002) Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci USA 99:15655–15660

    Article  CAS  Google Scholar 

  • Hara H, Adachi T (2002) Contribution of hepatocyte nuclear factor-4 to down-regulation of CYP2D6 gene expression by nitric oxide. Mol Pharmacol 61:194–200

    Article  CAS  Google Scholar 

  • Horslen SP, Fox IJ (2004) Hepatocyte transplantation. Transplantation 77:1481–1486

    Article  Google Scholar 

  • Jover R, Bort R, Gomez-Lechon MJ, Castell JV (2002) Down-regulation of human CYP3A4 by the inflammatory signal interleukin-6: molecular mechanism and transcription factors involved. FASEB J 16:1799–1801

    CAS  Google Scholar 

  • Katenz E, Vondran FW, Schwartlander R, Pless G, Gong X, Cheng X, Neuhaus P, Sauer IM (2007) Cryopreservation of primary human hepatocytes: the benefit of trehalose as an additional cryoprotective agent. Liver Transpl 13:38–45

    Article  Google Scholar 

  • Lau DT, Khokhar MF, Doo E, Ghany MG, Herion D, Park Y, Kleiner DE, Schmid P, Condreay LD, Gauthier J, Kuhns MC, Liang TJ, Hoofnagle JH (2000) Long-term therapy of chronic hepatitis B with lamivudine. Hepatology 32:828–834

    Article  CAS  Google Scholar 

  • Li CQ, Zhu YT, Zhang FX, Fu LC, Li XH, Cheng Y, Li XY (2005) Anti-HBV effect of liposome-encapsulated matrine in vitro and in vivo. World J Gastroenterol 11:426–428

    Article  CAS  Google Scholar 

  • Liu J, Zhu M, Shi R, Yang M (2003) Radix Sophorae flavescentis for chronic hepatitis B: a systematic review of randomized trials. Am J Chin Med 31:337–354

    Article  Google Scholar 

  • Lloyd TD, Orr S, Patel R, Crees G, Chavda S, Vadyar H, Berry DP, Sherlock D, Dennison AR (2004) Effect of patient, operative and isolation factors on subsequent yield and viability of human hepatocytes for research use. Cell Tissue Bank 5:81–87

    Article  CAS  Google Scholar 

  • Lok AS, McMahon BJ (2001) Chronic hepatitis B. Hepatology 34:1225–1241

    Article  CAS  Google Scholar 

  • Manns MP (2002) Current state of interferon therapy in the treatment of chronic hepatitis B. Semin Liver Dis 22(Suppl 1):7–13

    Article  Google Scholar 

  • Marzinzig M, Nussler AK, Stadler J, Marzinzig E, Barthlen W, Nussler NC, Beger HG, Morris SM Jr, Bruckner UB (1997) Improved methods to measure end products of nitric oxide in biological fluids: nitrite, nitrate, and S-nitrosothiols. Nitric Oxide 1:177–189

    Article  CAS  Google Scholar 

  • Miranda JP, Leite SB, Muller-Vieira U, Rodrigues A, Carrondo MJ, Alves PM (2009) Towards an extended functional hepatocyte in vitro culture. Tissue Eng Part C Methods 15:157–167

    Article  CAS  Google Scholar 

  • Morsiani E, Brogli M, Galavotti D, Pazzi P, Puviani AC, Azzena GF (2002) Biologic liver support: optimal cell source and mass. Int J Artif Organs 25:985–993

    CAS  Google Scholar 

  • Nebert DW, Russell DW (2002) Clinical importance of the cytochromes P450. Lancet 360:1155–1162

    Article  CAS  Google Scholar 

  • Nussler AK, Liu ZZ, Di Silvio M, Sweetland MA, Geller DA, Lancaster JR Jr, Billiar TR, Freeswick PD, Lowenstein CL, Simmons RL (1994) Hepatocyte inducible nitric oxide synthesis is influenced in vitro by cell density. Am J Physiol 267:C394–C401

    CAS  Google Scholar 

  • Sen S, Williams R, Jalan R (2002) The pathophysiological basis of acute-on-chronic liver failure. Liver 22(Suppl 2):5–13

    Article  Google Scholar 

  • Si W-K, Pan J, Lu H, Li Z-Q (2001) Study on matrine inhibiting proliferation of HepG2 cell and the relation between its dosage and inhibiting style. World J Gastroenterol 9:5

    Google Scholar 

  • Skibba JL, Gwartney EA (1997) Liver hyperthermia and oxidative stress: role of iron and aldehyde production. Int J Hyperthermia 13:215–226

    Article  CAS  Google Scholar 

  • Takahashi S, Yamazoe H, Sassa F, Suzuki H, Fukuda J (2009) Preparation of coculture system with three extracellular matrices using capillary force lithography and layer-by-layer deposition. J Biosci Bioeng 108:544–550

    Article  CAS  Google Scholar 

  • Tang W, Stearns RA (2001) Heterotropic cooperativity of cytochrome P450 3A4 and potential drug-drug interactions. Curr Drug Metab 2:185–198

    Article  CAS  Google Scholar 

  • Taylor BS, Alarcon LH, Billiar TR (1998) Inducible nitric oxide synthase in the liver: regulation and function. Biochemistry (Mosc) 63:766–781

    CAS  Google Scholar 

  • Torre D, Pugliese A, Speranza F (2002) Role of nitric oxide in HIV-1 infection: friend or foe? Lancet Infect Dis 2:273–280

    Article  CAS  Google Scholar 

  • Wan XY, Luo M, Li XD, He P (2009) Hepatoprotective and anti-hepatocarcinogenic effects of glycyrrhizin and matrine. Chem Biol Interact 181:15–19

    Article  CAS  Google Scholar 

  • Wang L, You Y, Wang S, Liu X, Liu B, Wang J, Lin X, Chen M, Liang G, Yang H (2012) Synthesis, characterization and in vitro anti-tumor activities of matrine derivatives. Bioorg Med Chem Lett 22:4100–4102

    Article  CAS  Google Scholar 

  • Watts P, Smith MD, Edwards I, Zammit V, Brown V, Grant H (1995) The influence of medium composition on the maintenance of cytochrome P-450, glutathione content and urea synthesis: a comparison of rat and sheep primary hepatocyte cultures. J Hepatol 23:605–612

    Article  CAS  Google Scholar 

  • Weigand K, Otto I (1974) Secretion of serum albumin by enzymatically isolated rat liver cells. FEBS Lett 46:127–129

    Article  CAS  Google Scholar 

  • Wright TL (2006) Introduction to chronic hepatitis B infection. Am J Gastroenterol 101(Suppl 1):S1–S6

    Article  Google Scholar 

  • Zamora R, Vodovotz Y, Billiar TR (2000) Inducible nitric oxide synthase and inflammatory diseases. Mol Med 6:347–373

    CAS  Google Scholar 

  • Zhang B, Liu ZY, Li YY, Luo Y, Liu ML, Dong HY, Wang YX, Liu Y, Zhao PT, Jin FG, Li ZC (2011) Antiinflammatory effects of matrine in LPS-induced acute lung injury in mice. Eur J Pharm Sci 44:573–579

    Article  CAS  Google Scholar 

  • Zhao X, Kan Q, Zhu L, Zhang GX (2011) Matrine suppresses production of IL-23/IL-17 and ameliorates experimental autoimmune encephalomyelitis. Am J Chin Med 39:933–941

    Article  CAS  Google Scholar 

  • Zimmerman HJ, Kodera Y, West M (1965) Rate of increase in plasma levels of cytoplasmic and mitochondrial enzymes in experimental carbon tetrachloride hepatotoxicity. J Lab Clin Med 66:315–323

    CAS  Google Scholar 

Download references

Acknowledgments

The authors declare no conflict of interest. This work was supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Ministry of Education (Grant No. 890[2008]) and the Medical Scientific Research Foundation of Guangdong Province (Grant No. A2009357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Gong.

Additional information

Xiaobing Gong and Yuan Gao have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 814 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, X., Gao, Y., Guo, G. et al. Effect of matrine on primary human hepatocytes in vitro. Cytotechnology 67, 255–265 (2015). https://doi.org/10.1007/s10616-013-9680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-013-9680-1

Keywords

Navigation