, Volume 66, Issue 5, pp 729–740 | Cite as

Characterization of embryonic stem-like cells derived from HEK293T cells through miR302/367 expression and their potentiality to differentiate into germ-like cells

  • Long Wang
  • Haijing Zhu
  • Jiang Wu
  • Na Li
  • Jinlian Hua
Brief Report


Human induced pluripotent stem (iPS) cells have great value for regenerative medicine, but are facing problems of low efficiency. MicroRNAs are a recently discovered class of 19–25 nt small RNAs that negatively target mRNAs. miR302/367 cluster has been demonstrated to reprogram mouse and human somatic cells to iPS cells without exogenous transcription factors, however, the repetition and differentiation potentiality of miR302/367-induced pluripotent stem (mirPS) cells need to be improved. Here, we showed overexpression of miR302/367 cluster reprogrammed human embryonic kidney 293T cells into mirPS cells in serum-free N2B27-based medium. The mirPS cells had similar morphology with embryonic stem cells, and expressed pluripotent markers including Oct4, Sox2, Klf4, and Nanog. In addition, through formation of embryoid bodies, various cells and tissues from three germ layers could be determined. Moreover, we examined the potential of mirPS cells differentiating into germ cells both in vitro and in vivo. Taken together, these data might provide a new source of cells and technique for the investigation of the mechanisms underlying reprogramming and pluripotency.


MicroRNA (miRNA) miR302/367 Induced pluripotent stem cells (iPSCs) Reprogramming N2B27 





Induced pluripotent stem cells


miR302/367-induced pluripotent stem (cell)


Dulbecco’s modified Eagle’s medium


Alkaline phosphatase


Embryoid bodies


Mouse embryonic fibroblasts


Retinoic acid


Bone morphogenetic protein 4


Glial fibrillary acidic protein


Transforming growth factor II



This work was supported by the grants from the Program (31272518) of National Natural Science Foundation of China, Doctoral Fund of Ministry of Education of China (RFDP, 20120204110030), the Fundamental Research Funds for the Central Universities (QN2011012).


  1. Ambros V (2011) MicroRNAs and developmental timing. Curr Opin Genet Dev 21:511–517CrossRefGoogle Scholar
  2. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA, Morrisey EE (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8:376–388CrossRefGoogle Scholar
  3. Barroso-del Jesus A, Lucena-Aguilar G, Menendez P (2009) The miR-302-367 cluster as a potential stemness regulator in ESCs. Cell Cycle 8:394–398CrossRefGoogle Scholar
  4. Barroso-delJesus A, Romero-López C, Lucena-Aguilar G, Melen GJ, Sanchez L, Ligero G, Berzal-Herranz A, Menendez P (2008) Embryonic stem cell-specific miR302-367 cluster: human gene structure and functional characterization of its core promoter. Mol Cell Biol 28:6609–6619CrossRefGoogle Scholar
  5. Cai N, Wang YD, Zheng PS (2013) The microRNA-302-367 cluster suppresses the proliferation of cervical carcinoma cells through the noveltarget AKT1. RNA 19:85–95CrossRefGoogle Scholar
  6. Chen C, Ridzon D, Lee CT, Blake J, Sun Y, Strauss WM (2007) Defining embryonic stem cell identity using differentiation-related microRNAs and their potential targets. Mamm Genome 18:316–327CrossRefGoogle Scholar
  7. Easley CA 4th, Phillips BT, McGuire MM, Barringer JM, Valli H, Hermann BP, Simerly CR, Rajkovic A, Miki T, Orwig KE, Schatten GP (2012) Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep 2:440–446CrossRefGoogle Scholar
  8. Eguizabal C, Montserrat N, Vassena R, Barragan M, Garreta E, Garcia-Quevedo L, Vidal F, Giorgetti A, Veiga A, Izpisua Belmonte JC (2011) Complete meiosis from human induced pluripotent stem cells. Stem Cells 29:1186–1195CrossRefGoogle Scholar
  9. Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S, Chen K, Li Y, Liu X, Xu J, Zhang S, Li F, He W, Labuda K, Song Y, Peterbauer A, Wolbank S, Redl H, Zhong M, Cai D, Zeng L, Pei D (2010) Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 8:71–79CrossRefGoogle Scholar
  10. Fareh M, Turchi L, Virolle V, Debruyne D, Almairac F, de-la Forest Divonne S, Paquis P, Preynat-Seauve O, Krause KH, Chneiweiss H, Virolle T (2012) The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death Differ 19:232–244CrossRefGoogle Scholar
  11. Feng B, Ng JH, Heng JC, Ng HH (2009) Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 4:301–312CrossRefGoogle Scholar
  12. Gassei K, Orwig KE (2013) Sall4 expression in gonocytes and spermatogonial clones of postnatal mouse testes. PLoS One 8:e53976CrossRefGoogle Scholar
  13. Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338:971–975CrossRefGoogle Scholar
  14. Hua J, Yu H, Dong W, Yang C, Gao Z, Lei A, Sun Y, Pan S, Wu Y, Dou Z (2009) Characterization of mesenchymal stem cells (MSCs) from human fetal lung: potential differentiation of germ cells. Tissue Cell 41:448–455CrossRefGoogle Scholar
  15. Hua J, Zhu H, Pan S, Liu C, Sun J, Ma X, Dong W, Liu W, Li W (2011) Pluripotent male germline stem cells from goat fetal testis and their survival in mouse testis. Cell Reprogram 13:133–144CrossRefGoogle Scholar
  16. Hwang HW, Mendell JT (2007) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 96(Suppl):R40–R44Google Scholar
  17. Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human mirPS cells. Nat Methods 7:197–199CrossRefGoogle Scholar
  18. Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27:459–461CrossRefGoogle Scholar
  19. Kane NM, Howard L, Descamps B, Meloni M, McClure J, Lu R, McCahill A, Breen C, Mackenzie RM, Delles C, Mountford JC, Milligan G, Emanueli C, Baker AH (2012) Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem Cells 30:643–654CrossRefGoogle Scholar
  20. Koide N, Yasuda K, Kadomatsu K, Takei Y (2012) Establishment and optimal culture conditions of microrna-induced pluripotent stem cells generated from HEK293 cells via transfection of microrna-302 s expression vector. Nagoya J Med Sci 74:157–165Google Scholar
  21. Kuo CH, Deng JH, Deng Q, Ying SY (2012) A novel role of miR-302/367 in reprogramming. Biochem Biophys Res Commun 417:11–16CrossRefGoogle Scholar
  22. Liao B, Bao X, Liu L, Feng S, Zovoilis A, Liu W, Xue Y, Cai J, Guo X, Qin B, Zhang R, Wu J, Lai L, Teng M, Niu L, Zhang B, Esteban MA, Pei D (2011) MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. J Biol Chem 286:17359–17364CrossRefGoogle Scholar
  23. Lin SL, Ying SY (2013) Mechanism and method for generating tumor-free iPS cells using intronic microRNA miR-302 induction. Methods Mol Biol 936:295–312CrossRefGoogle Scholar
  24. Lin SL, Chang DC, Chang-Lin S, Lin CH, Wu DT, Chen DT, Ying SY (2008) Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14:2115–2124CrossRefGoogle Scholar
  25. Lin SL, Chang DC, Lin CH, Ying SY, Leu D, Wu DT (2011) Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res 39:1054–1065CrossRefGoogle Scholar
  26. Liu Y, Song Z, Zhao Y, Qin H, Cai J, Zhang H, Yu T, Jiang S, Wang G, Ding M, Deng H (2006) A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells. Biochem Biophys Res Commun 346:131–139CrossRefGoogle Scholar
  27. Mali P, Ye Z, Hommond HH, Yu X, Lin J, Chen G, Zou J, Cheng L (2008) Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells 26:1998–2005CrossRefGoogle Scholar
  28. Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, Saito T, Nishimura J, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8:633–638CrossRefGoogle Scholar
  29. Mochiduki Y, Okita K (2012) Methods for iPS cell generation for basic research and clinical applications. Biotechnol J 7:789–797CrossRefGoogle Scholar
  30. Nayernia K, Nolte J, Michelmann HW, Lee JH, Rathsack K, Drusenheimer N, Dev A, Wulf G, Ehrmann IE, Elliott DJ, Okpanyi V, Zechner U, Haaf T, Meinhardt A, Engel W (2006) In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell 11:125–132CrossRefGoogle Scholar
  31. Nicholas CR, Haston KM, Grewall AK, Longacre TA, Reijo Pera RA (2009) Transplantation directs oocyte maturation from embryonic stem cells and provides a therapeutic strategy for female infertility. Hum Mol Genet 18:4376–4389CrossRefGoogle Scholar
  32. Nimmo RA, Slack FJ (2009) An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma 118:405–418CrossRefGoogle Scholar
  33. Niu Z, Hu Y, Chu Z, Yu M, Bai Y, Wang L, Hua J (2013) Germ-like cell differentiation from induced pluripotent stem cells (iPSCs). Cell Biochem Funct 31:12–19CrossRefGoogle Scholar
  34. Panula S, Medrano JV, Kee K, Bergström R, Nguyen HN, Byers B, Wilson KD, Wu JC, Simon C, Hovatta O, Reijo Pera RA (2011) Human germ cell differentiation from fetal-and adult-derived induced pluripotent stem cells. Hum Mol Genet 20:752–762CrossRefGoogle Scholar
  35. Piedrahita JA, Moore K, Oetama B, Lee CK, Scales N, Ramsoondar J, Bazer FW, Ott T (1998) Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biol Reprod 58:1321–1329CrossRefGoogle Scholar
  36. Qiu P, Bai Y, Liu C, He X, Cao H, Li M, Zhu H, Hua J (2012) A dose-dependent function of follicular fluid on the proliferation and differentiation of umbilical cord mesenchymal stem cells (MSCs) of goat. Histochem Cell Biol 138:593–603CrossRefGoogle Scholar
  37. Ren J, Jin P, Wang E, Marincola FM, Stroncek DF (2009) MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells. J Transl Med 7:20CrossRefGoogle Scholar
  38. Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481:295–305CrossRefGoogle Scholar
  39. Seki T, Yuasa S, Oda M, Egashira T, Yae K, Kusumoto D, Nakata H, Tohyama S, Hashimoto H, Kodaira M, Okada Y, Seimiya H, Fusaki N, Hasegawa M, Fukuda K (2010) Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 7:11–14CrossRefGoogle Scholar
  40. Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, Blelloch R (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29:443–448CrossRefGoogle Scholar
  41. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270:488–498CrossRefGoogle Scholar
  42. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefGoogle Scholar
  43. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefGoogle Scholar
  44. Tian Y, Zhang Y, Hurd L, Hannenhalli S, Liu F, Lu MM, Morrisey EE (2011) Regulation of lung endoderm progenitor cell behavior by miR302/367. Development 138:1235–1245CrossRefGoogle Scholar
  45. Trompeter HI, Abbad H, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Schira J, Müller HW, Wernet P (2011) MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS One 6:e16138CrossRefGoogle Scholar
  46. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920CrossRefGoogle Scholar
  47. Zhang Z, Wu WS (2013) Sodium butyrate promotes generation of human induced pluripotent stem cells through induction of the miR302/367 cluster. Stem Cells Dev 22:2268–2277CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Long Wang
    • 1
  • Haijing Zhu
    • 1
  • Jiang Wu
    • 1
  • Na Li
    • 1
  • Jinlian Hua
    • 1
  1. 1.College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of ChinaNorthwest A&F UniversityYanglingChina

Personalised recommendations