Skip to main content
Log in

Mutagenicity and genotoxicity of dicapthon insecticide

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Mutagenic and genotoxic effects of dicapthon were investigated by using the bacterial reverse mutation assay in Salmonella typhimurium TA97, TA98, TA100 and TA102 strains with or without metabolic activation system (S9 mix), and chromosome aberrations (CAs), sister chromatid exchanges (SCEs), and micronucleus (MN) tests in human peripheral blood lymphocytes in vitro. Dicapthon was dissolved in dimethyl sulfoxide for all test systems. 0.1, 1, 10 and 100 μg/plate doses of dicapthon were found to be weakly mutagenic on S. typhimurium TA 98 without S9 mix. The human peripheral lymphocytes were treated with four experimental concentrations of dicapthon (25, 50, 100, and 200 μg/mL) for 24 and 48 h. Dicapthon increased the frequency of SCE only at the 100 μg/mL concentration for the 24 and 48 h applications. Dicapthon also induced abnormal cell frequency, CA/cell ratio and frequency of MN dose dependently for 24 and 48 h. Dicapthon showed a statistically significant cytotoxic effect by decreasing the mitotic index in all concentrations and a cytostatic effect by decreasing nuclear division index in 100 and 200 μg/mL concentrations for both treatment periods when compared with both untreated and solvent controls. These values decreased also in a dose dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akintonwa A, Awodele O, Olayemi SO, Oreagba IA, Olaniyi OM (2008) The mutagenic testing of different brands of commonly used insecticides. Afr J Biotechnol 7:2134–2136

    CAS  Google Scholar 

  • Albertini RJ, Anderson D, Douglas GR, Hagmar L, Hemminki K, Merlo F, Natarajan AT, Norppa H, Shuker DEG, Tice R, Waters MD, Aitio A (2000) IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. Mutat Res 463:111–172

    Article  CAS  Google Scholar 

  • Arora PK, Jain RK (2011) Pathway for degradation of 4-chloro-2-nitrophenol by Arthrobacter sp SJCon. Curr Microbiol 63:568–573

    Article  CAS  Google Scholar 

  • Auld Hon JAC, Biggs E (1972) Toxicity and health aspects in the use of insecticide. Ont Minist Environ 1–61

  • Bain LJ, LeBlanc GA (1996) Interaction of structurally diverse pesticides with the human MDR1 gene product P-glycoprotein. Toxicol Appl Pharmacol 141:288–298

    CAS  Google Scholar 

  • Balaji M, Sasikala K (1993) Cytogenetic effect of malathion in in vitro culture of human peripheral blood. Mutat Res 301:13–17

    Article  CAS  Google Scholar 

  • Carver JH, Bootman J, Cimino MC, Esber HJ, Kirby P, Kirkhart B, Wong ZA, MacGregor JA (1985) Genotoxic potential of acephate technical: in vitro and in vivo effects. Toxicology 35:125–142

    Article  CAS  Google Scholar 

  • Conrad S, Künzel J, Löbrich M (2011) Sister chromatid exchanges occur in G2-irradiated cells. Cell Cycle 10:222–228

    Article  CAS  Google Scholar 

  • Dean BJ, Brooks TM, Hodson-Walker G, Hutson DH (1985) Genetic toxicology testing of 41 industrial chemicals. Mutat Res 153:57–77

    Article  CAS  Google Scholar 

  • Eke D, Çelik A (2008) Genotoxicity of thimerosal in cultured human lymphocytes with and without metabolic activation sister chromatid exchange analysis proliferation index and mitotic index. Toxicol In Vitro 22:927–934

    Article  CAS  Google Scholar 

  • Ennaceur S, Ridha D, Marcos R (2008) Genotoxicity of the organochlorine pesticides 1,1-dichloro-2,2-3 bis(p-chlorophenyl)ethylene (DDE) and hexachlorobenzene (HCB) in cultured human lymphocytes. Chemosphere 71:1335–1339

    Article  CAS  Google Scholar 

  • Epel D (1963) The Effects of Carbon monoxide inhibition of ATP level and the date of mitosis in sea urching Egg. J Cell Biol 17:315–319

    Article  CAS  Google Scholar 

  • Eroğlu HE (2009) Toxic nuclear effects of the organophosphorus insecticide dichlorvos (DDVP) in human peripheral blood lymphocytes. Acta Biol Hung 60:409–416

    Article  Google Scholar 

  • Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95

    Article  CAS  Google Scholar 

  • Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104

    Article  CAS  Google Scholar 

  • Fenech M, Bonassi S (2011) The effect of age, gender, diet and life-style on DNA damage measured using micronucleus frequency in human peripheral blood lymphocytes. Mutagenesis 26:43–49

    Article  CAS  Google Scholar 

  • Giri S, Sharma GD, Giri A, Prasad SB (2002) Genotoxic effects of malathion in chick in vivo micronucleus assay. Cytologia 67:53–59

    Article  CAS  Google Scholar 

  • Gollapudi B, Mendrala AL, Linscombe A (1995) Evaluation of the genetic toxicity of the organophosphate insecticide chlorpyrifos. Mutat Res 342:25–36

    Article  CAS  Google Scholar 

  • Heddle JA, Cimino MC, Hayashi M, Romagna F, Shelby MD, Tucker JD, Vanparys Ph, Mac Gregor JT (1991) Micronuclei as an index of cytogenetic damage: past, present, and future. Environ Mol Mutagen 18:277–291

    Article  CAS  Google Scholar 

  • Hidalgo A, Gonzales-Reyes JA, Navas P, Garcia-Herdugo G (1989) Abnormal mitosis and growth Inhibition in Allium cepa roots induced by propham and chlorpropham. Cytobios 57:7–14

    CAS  Google Scholar 

  • Ila BH, Topaktas M, Rencuzogullari E, Kayraldiz A, Donbak L, Daglioglu YK (2008) Genotoxic potential of cyfluthrin. Mutat Res 656:49–54

    Article  CAS  Google Scholar 

  • Jain A, Andsorbhoy RK (1988) Cytogenetical studies on the effects of some chlorinated pesticides III concluding remarks. Cytologia 53:427–436

    Article  CAS  Google Scholar 

  • Kappas A, Vachkova R, Lalchev S, Tzoneva M, Markaki M (1990) Genotoxicity studies on the organophosphorus insecticide chloracetophone. Mutat Res 240:203–208

    Article  CAS  Google Scholar 

  • Karabay UN, Oguz MG (2005) Cytogenetic and genotoxic effects of the insecticides, imidacloprid and methamidophos. Gen Mol Res 4:653–662

    CAS  Google Scholar 

  • Kirsch-Volders M, Sofuni T, Aardemac M, Albertini S, Eastmond D, Fenech M, Ishidate JM, Kirchner S, Lorge E, Morita T, Norppa H, Surrallés J, Vanhauwaert A, Wakata A (2003) Report from the in vitro micronucleus assay working group. Mutat Res 540:153–163

    Article  CAS  Google Scholar 

  • Kligerman AD, Doerr CL, Tennant AH, Zucker RM (2000) Cytogenetic studies of three triazine herbicides. In vitro studies Mutat Res 465:53–59

    Article  CAS  Google Scholar 

  • Kocaman AY, Topaktaş M (2010) Genotoxic effects of a particular mixture of acetamiprid and α-cypermethrin on chromosome aberration, sister chromatid exchange, and micronucleus formation in human peripheral blood lymphocytes. Environ Toxicol 25:157–168

    CAS  Google Scholar 

  • Kocaman AY, Rencüzoğulları E, Topaktaş M (2012) In vitro investigation of the genotoxic and cytotoxic effects of thiacloprid in cultured human peripheral blood lymphocytes. Environ Toxicol. doi:10.1002/tox.21790

    Google Scholar 

  • Konuk M, Akyıl D, Liman R, Özkara A (2008) Examination of the mutagenic effects of some pesticides. Fresen Environ Bull 17:439–442

    CAS  Google Scholar 

  • Kumar KBS, Ankathil R, Devi KS (1993) Chromosomal aberrations induced by methylparathion in human periphal lymphocytes of alcoholics and smokers. Hum Exp Toxicol 12:285–288

    Article  CAS  Google Scholar 

  • Liman R, Akyıl D, Eren Y, Konuk M (2010) Testing of the mutagenicity and genotoxicity of metolcarb by using both Ames/Salmonella and Allium test. Chemosphere 80:1056–1061

    Article  CAS  Google Scholar 

  • Liman R, Cigerci IH, Akyıl D, Eren Y, Konuk M (2011) Determination of genotoxicity of fenaminosulf by Allium and Comet tests. Pestic Biochem Phys 99:61–64

    Article  CAS  Google Scholar 

  • Lv XQ, Zhang YT (2010) QSAR studies on toxicity of organic compounds to Chlorella vulgaris. Second WRI Glob Congr Intell Syst 3:119–122

    Google Scholar 

  • Mace MLJ, Daskal Y, Wray W (1978) Scanning electron microscopy of chromosome aberrations. Mutat Res 52:199–206

    Article  Google Scholar 

  • Maron DH, Ames BN (1983) Revised methods for the Samonella typhimurium mutagenicity test. Mutat Res 113:173–215

    Article  CAS  Google Scholar 

  • Mitelman F (ed) (1995) An ınternational system for human cytogenetic nomenclature. Report of the standing committee on human cytogenetic nomenclature. S. Karger Publishers, Basel

    Google Scholar 

  • Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 445:29–60

    Article  Google Scholar 

  • Muangsiri W, Werawatganone P (2006) Degradation of dicapthon in micellar solutions and effect of HPMC. Thai J Health Res 20:141–155

    CAS  Google Scholar 

  • Müller L, Sofuni T (2000) Appropriate levels of cytotoxicity for genotoxicity tests using mammalian cells in vitro. Environ Mol Mutagen 35:202–205

    Article  Google Scholar 

  • Natarajan AT (2002) Chromosome aberrations: past, present, and future. Mutat Res 504:3–16

    Article  CAS  Google Scholar 

  • Obare SO, De C, Guo W, Haywood TL, Samuels TA, Adams CP, Masika NO, Murray DH, Anderson GA, Campbell K, Fletcher K (2010) Fluorescent chemosensors for toxic organophosphorus pesticides: a review. Sensors 10:7018–7043

    Article  CAS  Google Scholar 

  • Özkan D, Yüzbaşıoğlu D, Ünal F, Yılmaz S, Aksoy H (2009) Evaluation of the cytogenetic damage induced by the organophosphorous insecticide acephate. Cytotechnology 59:73–80

    Article  Google Scholar 

  • Prabhavathy DG, Shaik AP, Jamil K (2006) Cytotoxicity and genotoxicity induced by the pesticide profenofos on cultured human peripheral blood lymphocytes. Drug Chem Toxicol 29:313–322

    Article  Google Scholar 

  • Rencüzoğulları E, Ila HB, Kayraldız A, Arslan M, Diler SB, Topaktaş M (2004) The genotoxic effect of the new acaricide etoxazole. Russ J Genet 40:1300–1304

    Article  Google Scholar 

  • Russel PJ (2002) Chromosomal mutation. In: Cummings B (ed) Genetics. Pearson Education Inc, San Francisco, pp 595–621

    Google Scholar 

  • Sandal S, Yilmaz B (2011) Genotoxic effects of chlorpyrifos, cypermethrin, endosulfan and 2,4-D on human peripheral lymphocytes cultured from smokers and nonsmokers. Environ Toxicol 26:433–442

    Article  CAS  Google Scholar 

  • Sierra-Tores CH, Cajas-Salazar N, Hoyos LS, Zuleta M, Whorton EB, Au WW (1998) In vitro and in vivo genotoxic activity of miral, an organophosphorus insecticide used in Colombia. Mutat Res 415:59–67

    Article  Google Scholar 

  • Speit G, Haupter S (1985) On the mechanism of differential giemsa staining of bromodeoxyuridine-substituted chromosomes. II. differences between the demonstration of sister chromatid differentiation and replication patterns. Hum Genet 70:126–129

    Article  CAS  Google Scholar 

  • Timoroğlu I, Yüzbaşıoğlu D, Ünal F, Yılmaz S, Aksoy H, Çelik M (2012) Assessment of the genotoxic effects of organophosphorus insecticides phorate and trichlorfon in human lymphocytes. Environ Toxicol. doi:10.1002/tox.21783

    Google Scholar 

  • Ünal F, Yüzbaşıoğlu D, Yılmaz S, Akıncı N, Aksoy H (2011) Genotoxic effects of chlorophenoxy herbicide diclofop-methyl in mice in vivo and in human lymphocytes in vitro. Drug Chem Toxicol 34:390–395

    Article  Google Scholar 

  • Undeğer U, Başaran N (2002) Assessment of DNA damage in workers occupationally exposed to pesticides mixtures by the alkaline comet assay. Arch Toxicol 76:430–436

    Article  Google Scholar 

  • Undeğer U, Başaran N (2005) Effects of pesticides on human peripheral lymphocytes in vitro: induction of DNA damage. Arch Toxicol 79:169–176

    Article  Google Scholar 

  • United States Environmental Protection Agency (US EPA) (1996) Health effects tests guidelines: OPPTS 870526. The Salmonella typhimurium reverse mutation assay. EPA712-C-96-219, United States Environmental Protection Agency, Washington

  • US EPA (2010) Pesticides and food: why children may be especially sensitive to pesticides. Available online: http://www.epa.gov/pesticides/food/pest.htm (Accessed on February 26, 2010)

  • Van’t Hof J (1968) The action of IAA and kinetin on the mitotic cycle of proliferative and stationary phase excised root meristem. Exp Cell Res 51:167–176

    Article  Google Scholar 

  • Wu JC, Chye SM, Shih MK, Chen CH, Yang HL, Chen SC (2010) Genotoxicity of dicrotophos, an organophosphorous pesticide, assessed with different assays in vitro. Environ Toxicol 27:307–315

    Article  Google Scholar 

  • Yadav JS, Kaushik VK (2002) Studies on the genotoxicity of an organophosphorous pesticide, Baytex-1000. Int J Hum Genet 2:19–25

    Google Scholar 

  • Yılmaz S, Aksoy H, Ünal F, Çelik M, Yüzbaşıoğlu D (2008) Genotoxic action of fungicide Conan 5FL (hexaconazole) on mammalian cells in vivo and in vitro. Genetika 44:273–278

    Google Scholar 

  • Yüzbaşıoğlu D, Çelik M, Yılmaz S, Ünal F, Aksoy H (2006) Clastogenicity of the fungicide afugan in cultured human lymphocytes. Mutat Res 604:53–59

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Recep Liman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liman, R. Mutagenicity and genotoxicity of dicapthon insecticide. Cytotechnology 66, 741–751 (2014). https://doi.org/10.1007/s10616-013-9623-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-013-9623-x

Keywords

Navigation