Skip to main content

Advertisement

Log in

Optimizing the transient transfection process of HEK-293 suspension cells for protein production by nucleotide ratio monitoring

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Large scale, transient gene expression (TGE) is highly dependent of the physiological status of a cell line. Therefore, intracellular nucleotide pools and ratios were used for identifying and monitoring the optimal status of a suspension cell line used for TGE. The transfection efficiency upon polyethyleneimine (PEI)-mediated transient gene delivery into HEK-293 cells cultured in suspension was investigated to understand the effect of different culture and transfection conditions as well as the significance of the culture age and the quality of the cell line used. Based on two different bicistronic model plasmids expressing the human erythropoietin gene (rHuEPO) in the first position and green fluorescent protein as reporter gene in the second position and vice versa, a completely serum-free transient transfection process was established. The process makes use of a 1:1 mixture of a special calcium-free DMEM and the FreeStyle™ 293 Expression Medium. Maximum transfectability was achieved by adjusting the ratio for complex formation to one mass part of DNA and three parts of PEI corresponding to an N/P (nitrogen residues/DNA phosphates) ratio of 23 representing a minimum amount of DNA for the polycation-mediated gene delivery. Applying this method, maximum transfectabilities between 70 and 96 % and a rHuEPO concentration of 1.6 μg mL−1 72 h post transfection were reached, when rHuEPO gene was expressed from the first position of the bicistronic mRNA. This corresponded to 10 % of the total protein concentration in the cell-free supernatant of the cultures in protein-free medium. Up to 30 % higher transfectabilities were found for cells of early passages compared to those from late passages under protein-free culture conditions. In contrast, when the same cells were propagated in serum-containing medium, higher transfectabilities were found for late-passage cells, while up to 40 % lower transfectabilities were observed for early-passage cells. Nucleotide pools were measured during all cell cultivations and the nucleoside triphosphate/uridine ratios were calculated. These ‘nucleotide ratios’ changed in an age-dependent manner and could be used to distinguish early- from late-passage cells. The observed effects were also dependent on the presence of serum in the culture. Nucleotide ratios were shown being applied to investigate the optimal passage number of cultured cell lines for achieving a maximum productivity in cultures used for transient gene expression. Furthermore, these nucleotide ratios proved to be different for transfected and untransfected cells, providing a high potential tool to monitor the status of transfection under various culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA (1996) A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum Gene Ther 7:1947–1954

    Article  CAS  Google Scholar 

  • Amadeo GI, Moreira R, Lima R, Teixeira D, Kratje R, Etcheverrigaray M (2003) Screening of lectins from South American plants used as affinity ligands to purify rhEPO. Braz J Chem Eng 20:21–26

    Article  CAS  Google Scholar 

  • Atkinson DE (1969) Regulation of enzyme function. Annu Rev Microbiol 23:47–68

    Article  CAS  Google Scholar 

  • Backliwal G, Hildinger M, Chenuet S, Wulhfard S, de Jesus M, Wurm FM (2008) Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res 36:e96

    Article  CAS  Google Scholar 

  • Baker A, Saltik M, Lehrmann H, Killisch I, Mautner V, Lamm G, Christofori G, Cotton M (1997) Polyethylenimine (PEI) is a simple, inexpensive and effective reagent for condensing and linking plasmid DNA to adenovirus for gene delivery. Gene Ther 4:773–782

    Article  CAS  Google Scholar 

  • Baldi L, Hacker DL, Adam M, Wurm FM (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett 29:677–684

    Article  CAS  Google Scholar 

  • Barnabé N, Butler M (1998) The relationship between intracellular UDP-N-acetyl hexosamine nucleotide pool and monoclonal antibody production in a mouse hybridoma. J Biotechnol 60:67–80

    Article  Google Scholar 

  • Berg DT, McClure DB, Grinnell BW (1993) High-level expression of secreted proteins from cells adapted to serum-free suspension culture. Biotechniques 14:972–978

    CAS  Google Scholar 

  • Blasey HD, Aubry JP, Mazzei GJ, Bernard AR (1996) Large scale transient expression with COS cells. Cytotechnology 18:183–192

    Article  Google Scholar 

  • Boletta A, Benigni A, Lutz J, Remuzzi G, Soria M, Monaco L (1997) Nonviral gene delivery to the rat kidney with polyethylenimine. Hum Gene Ther 8:1243–1251

    Article  CAS  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  CAS  Google Scholar 

  • Boussif O, Zanta MA, Behr JP (1996) Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther 3:1074–1080

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bragonzi A, Boletta A, Biffi A, Muggia A, Sersale G, Cheng SH, Bordignon C, Assale BM, Conese M (1999) Comparison between cationic polymers and lipids in mediating systemic gene delivery to the lungs. Gene Ther 6:1995–2004

    Article  CAS  Google Scholar 

  • Brightwell G, Poirier V, Cole E, Ivins S, Brown KW (1997) Serum-dependent and cell cycle-dependent expression from a cytomegalovirus-based mammalian expression vector. Gene 194:115–123

    Article  CAS  Google Scholar 

  • Chen CA, Okayama H (1988) Calcium phosphate-mediated gene transfer: a highly-efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques 6:632–638

    CAS  Google Scholar 

  • Cho M-S, Yee H, Chan S (2002) Establishment of a human somatic hybrid cell line for recombinant protein production. J Biomed Sci 9:631–638

    Article  CAS  Google Scholar 

  • Cho M-S, Yee H, Brown C, Mei B, Mirenda C, Chan S (2003) Versatile expression system for rapid and stable production of recombinant proteins. Biotechnol Prog 19:229–232

    Article  CAS  Google Scholar 

  • Coté J, Garnier A, Massie B, Kamen A (1998) Serum-free production of recombinant proteins and adenoviral vectors by 293SF-3F6 cells. Biotechnol Bioeng 59:567–575

    Article  Google Scholar 

  • Curiel DT (1994) High-efficiency gene transfer mediated by adenovirus-polylysine DNA complex. Ann NY Acad Sci 716:36–56

    Article  CAS  Google Scholar 

  • De Jesus MJ, Girard P, Bourgeois M, Baumgartner G, Jacko B, Amstutz H, Wurm FM (2004) TubeSpin satellites: a fast track approach for process development with animal cells using shaking technolopgy. Biochem Eng J 17:217–223

    Article  CAS  Google Scholar 

  • Derouazi M, Girard P, Van Tilborgh F, Igelsias K, Muller N, Bertschinger M, Wurm FM (2004) Serum-free large-scale transient transfection of CHO cells. Biotechnol Bioeng 87:537–545

    Article  CAS  Google Scholar 

  • Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30:e9

    Article  Google Scholar 

  • Ferrari S, Moro E, Pettenazzo A, Behr JP, Zacchello F, Scarpa M (1997) ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo. Gene Ther 4:1100–1106

    Article  CAS  Google Scholar 

  • Galbraith DJ, Tait AS, Racher AJ, Birch JR, James DC (2006) Control of culture environment for improved polyethylenimine-mediated transient production of recombinant monoclonal antibodies by CHO cells. Biotechnol Prog 22:753–762

    Article  CAS  Google Scholar 

  • Geisse S, Henke M (2005) Large-scale transient transfection of mammalian cells: a newly emerging attractive option for recombinant protein production. J Struct Funct Gen 6:165–170

    Article  CAS  Google Scholar 

  • Geisse S, Jordan M, Wurm FM (2005) Large-scale transient expression of therapeutic proteins in mammalian cells. Methods Mol Biol 308:87–98

    CAS  Google Scholar 

  • Girard P, Derouazi M, Baumgartner G, Bourgeois M, Jordan M, Jacko B, Wurm FM (2002) 100-liter transient transfection. Cytotechnology 38:15–21

    Article  CAS  Google Scholar 

  • Godbey WT, Wu KK, Mikos AG (1999) Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci USA 96:5177–5181

    Article  CAS  Google Scholar 

  • Goula D, Benoist C, Mantero S, Merlo G, Levi G, Demeneix BA (1998) Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther 5:1291–1295

    Article  CAS  Google Scholar 

  • Goula D, Becker N, Lemkine GF, Normandie P, Rodrigues J, Mantero S, Levi G, Demeneix BA (2000) Rapid crossing of the pulmonary endothelial barrier by polyethylenimine/DNA complexes. Gene Ther 7:499–504

    Article  CAS  Google Scholar 

  • Grammatikos SI, Valley U, Nimtz M, Conradt HS, Wagner R (1998) Intracellular UDP-N-acetylhexosamine pool affects N-glycan complexity: a mechanism of ammonium action on protein glycosylation. Biotechnol Prog 14:410–419

    Article  CAS  Google Scholar 

  • Grammatikos SI, Tobien K, Noé W, Werner RG (1999) Monitoring of intracellular ribonucleotide pools is a powerful tool in the development and characterization of mammalian cell culture processes. Biotechnol Bioeng 64:357–367

    Article  CAS  Google Scholar 

  • Griffiths JB, Racher AJ (1994) Cultural and physiological factors affecting expression of recombinant proteins. Cytotechnology 15:3–9

    Article  CAS  Google Scholar 

  • Gulick T (2001) Transfection of DNA into eukaryotic cells. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley-Interscience, New York, Unit 9.2

  • Haldankar R, Li D, Saremi Z, Baikalov C, Deshpande R (2006) Serum-free suspension large-scale transient transfection of CHO cells in WAVE bioreactors. Mol Biotechnol 34:191–199

    Article  CAS  Google Scholar 

  • Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P, Strauss M (1995) Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci USA 92:10099–10103

    Article  CAS  Google Scholar 

  • Irani N, Beccaria AJ, Wagner R (2002) Expression of recombinant cytoplasmic yeast pyruvate carboxylase for the improvement of the production of human erythropoietin by recombinant BHK-21 cells. J Biotechnol 93:269–282

    Article  CAS  Google Scholar 

  • Jordan M, Köhne C, Wurm FM (1998) Calcium-phosphate mediated DNA transfer into HEK-293 cells in suspension: control of physicochemical parameters allows transfection in stirred media. Cytotechnology 26:39–47

    Article  CAS  Google Scholar 

  • Kratje RB, Wagner R (1992) Evaluation of the production of recombinant human interleukin-2 in a fluidized bed bioreactor. Biotechnol Bioeng 39:233–242

    Article  CAS  Google Scholar 

  • Kratje RB, Lind W, Wagner R (1991) Evaluation of the proteolytic potential of in vitro-cultivated hybridoma and recombinant mammalian cells. J Biotechnol 32:107–125

    Article  Google Scholar 

  • Kunath K, Von Harpe A, Fischer D, Petersen H, Bickel U, Voigt K, Kissel T (2003) Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release 89:113–125

    Article  CAS  Google Scholar 

  • Lambert RC, Maulet Y, Dupont JL, Mykita S, Craig P, Volsen S, Feltz A (1996) Polyethylenimine-mediated DNA transfection of peripheral and central neurons in primary culture: probing Ca2+ channel structure and function with antisense oligonucleotides. Mol Cell Neurosi 7:239–246

    Article  CAS  Google Scholar 

  • Larsen BR, West FG (1981) A method for quantitative amino acid analysis using precolumn o-phthaldialdehyd derivation and high performance liquid chromatography. J Chromatogr Sci 19:259–265

    Article  CAS  Google Scholar 

  • Lazar A, Reuveny S, Kronman C, Velan B, Shafferman A (1993) Evaluation of anchorage-dependent cell propagation systems for production of human acetylcholinesterase by recombinant 293 cells. Cytotechnology 13:115–123

    Article  CAS  Google Scholar 

  • Lindell J, Girard P, Muller N, Jordan M, Wurm F (2004) Calfection: a novel gene transfer method for suspension cells. Biochim Biophys Acta 1676:155–161

    Article  CAS  Google Scholar 

  • Meissner P, Pick H, Kulangara A, Chatellard P, Friedrich K, Wurm FM (2001) Transient gene expression: recombinant protein production with suspension-adapted HEK293-EBNAQ cells. Biotechnol Bioeng 75:197–203

    Article  CAS  Google Scholar 

  • Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A (2005) A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther 11:990–995

    Article  CAS  Google Scholar 

  • Moore A, Mercer J, Dutina G, Donahue C, Bauer K, Mather J, Etcheverry T, Ryll T (1997) Effect of temperature shift on cell cycle, apoptosis and nucleotide pools in CHO cell batch culture. Cytotechnology 23:47–54

    Article  CAS  Google Scholar 

  • Muller N (2005) Transient gene expression for rapid protein production: studies & optimizations under serum-free conditions. PhD Thesis, No 3292, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

  • Muller N, Derouazi M, Van Tilborgh F, Wulhfard S, Hacker DL, Jordan M, Wurm FM (2007) Scalable transient gene expression in Chinese hamster ovary cells in instrumented and non-instrumented cultivation systems. Biotechnol Lett 29:703–711

    Article  CAS  Google Scholar 

  • Murakami H (1998) Serum-free media used for cultivation of hybridomas. In: Murakami H (ed) Monoclonal antibodies: production and application. Alan Liss Inc, New York, pp 107–141

    Google Scholar 

  • Ogris M, Steinlein P, Kursa M, Mechtler K, Kircheis R, Wagner E (1998) The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther 5:1425–1433

    Article  CAS  Google Scholar 

  • Pham PL, Perret S, Cass B, Carpentier E, St-Laurent G, Bisson L, Kamen A, Durocher Y (2005) Transient gene expression in HEK293 cells: peptone addition posttransfection improves recombinant protein synthesis. Biotechnol Bioeng 90:332–344

    Article  CAS  Google Scholar 

  • Pham PL, Kamen A, Durocher Y (2006) Large-scale transfection of mammalian cells for the fast production of recombinant proteins. Mol Biotechnol 34:225–237

    Article  CAS  Google Scholar 

  • Powell JS, Berkner KL, Lebo RV, Adamson JW (1986) Human erythropoietin gene: high level expression in stably transfected mammalian cells and chromosome localization. Proc Natl Acad Sci USA 83:6465–6469

    Article  CAS  Google Scholar 

  • Ridder R, Geisse S, Kleuser B, Kwallaneck P, Gram H (1995) A COS-cell-based system for rapid production and quantification of scFv:IgCκ antibody fragments. Gene 166:273–276

    Article  CAS  Google Scholar 

  • Ryll T, Wagner R (1991) Improved ion-pair high-performance liquid chromatographic method for the quantification of a wide variety of nucleotides and sugar-nucleotides in animal cells. J Chromatogr 570:77–88

    Article  CAS  Google Scholar 

  • Ryll T, Wagner R (1992) Intracellular ribonucleotide pools as a tool for monitoring the physiological state of in vitro cultivated mammalian cells during production processes. Biotechnol Bioeng 40:934–946

    Article  CAS  Google Scholar 

  • Ryll T, Lucki-Lange M, Jäger V, Wagner R (1990) Production of recombinant interleukin 2 with BHK cells in a hollow fibre and a stirred tank reactor with protein-free medium. J Biotechnol 14:377–392

    Article  CAS  Google Scholar 

  • Ryll T, Jäger V, Wagner R (1991) Intracellular concentrations of ATP and other nucleotides during continuous cultivation of hybridoma cells. In: Spier RE, Griffiths JB, Meignier B (eds) Production of biologicals from animal cells in culture. Butterworth-Heinemann, Oxford, pp 236–242

    Chapter  Google Scholar 

  • Ryll T, Valley U, Wagner R (1994) Biochemistry of growth inhibitation by ammonium ions in mammalian cells. Biotechnol Bioeng 44:184–193

    Article  CAS  Google Scholar 

  • Sandford KK, Earle WR, Evans VJ, Waltz H, Shannon JE (1951) The measurement of proliferation in tissue cultures by enumeration of cell nuclei. J Natl Cancer Inst 11:773–795

    Google Scholar 

  • Schlaeger EJ, Christensen K (1999) Transient gene expression in mammalian cells grown in serum-free suspension culture. Cytotechnology 30:71–83

    Article  CAS  Google Scholar 

  • Schoenherr I, Stapp T, Ryll T (2000) A comparison of different methods to determine the end of exponential growth in CHO cell cultures for optimization of scale-up. Biotechnol Prog 16:815–821

    Article  CAS  Google Scholar 

  • Stettler M, Zhang X, Hacker DL, De Jesus M, Wurm FM (2007) Novel orbital shake bioreactors for transient production of CHO derived IgGs. Biotechnol Prog 23:1340–1346

    Article  CAS  Google Scholar 

  • Stoscheck CM (1990) Quantitation of protein. Methods Enzymol 182:50–68

    Article  CAS  Google Scholar 

  • Strober W (1993) Trypan blue exclusion test of cell viability. In: Coligan JE, Krusbeek AM, Margulies DH, Shevach EM, Strober W (eds) Current protocols in immunology. Wiley, New York; A.3.3

  • Tuvesson O, Uhe C, Rozkov A, Lüllau E (2008) Development of a generic transient transfection process at 100 L scale. Cytotechnology 56:123–136

    Article  CAS  Google Scholar 

  • von Harpe A, Petersen H, Li Y, Kissel T (2000) Characterization of commercially available and synthesized polyethylenimines for gene delivery. J Control Release 69:309–322

    Article  Google Scholar 

  • Wroblewski F, LaDue JS (1955) Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med 90:210–213

    Article  CAS  Google Scholar 

  • Wurm FM, Bernard A (1999) Large-scale transient expression in mammalian cells for recombinant protein production. Curr Opin Biotechnol 10:156–159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de los Milagros Bassani Molinas, M., Beer, C., Hesse, F. et al. Optimizing the transient transfection process of HEK-293 suspension cells for protein production by nucleotide ratio monitoring. Cytotechnology 66, 493–514 (2014). https://doi.org/10.1007/s10616-013-9601-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-013-9601-3

Keywords

Navigation