Advertisement

Cytotechnology

, Volume 65, Issue 5, pp 737–747 | Cite as

Expression of biomineralisation genes in tissues and cultured cells of the abalone Haliotis tuberculata

  • Matthew O’Neill
  • Béatrice Gaume
  • Françoise Denis
  • Stéphanie Auzoux-BordenaveEmail author
Marine Invertebrate Cell Culture

Abstract

Mollusc shell biomineralisation involves a variety of organic macromolecules (matrix proteins and enzymes) that control calcium carbonate (CaCO3) deposition, growth of crystals, the selection of polymorph, and the microstructure of the shell. Since the mantle and the hemocytes play an important role in the control of shell formation, primary cell cultures have been developed to study the expression of three biomineralisation genes recently identified in the abalone Haliotis tuberculata: a matrix protein, Lustrin A, and two carbonic anhydrase enzymes. Mantle cells and hemocytes were successfully maintained in primary cultures and were evaluated for their viability and proliferation over time using a semi-automated assay (XTT). PCR and densitometric analysis were used to semi-quantify the gene expression and compare the level of expression in native tissues and cultured cells. The results demonstrated that the three genes of interest were being expressed in abalone tissues, with expression highest in the mantle and much lower in the hemocytes and the gills. Biomineralisation genes were also expressed significantly in mantle cells, confirming that primary cultures of target tissues are suitable models for in vitro investigation of matrix protein secretion.

Keywords

Biomineralisation Gene expression Primary culture Haliotis tuberculata 

Notes

Acknowledgments

We thank S. Huchette from the farm France-Haliotis (Plouguerneau, France) for providing abalones Haliotis tuberculata. This work was financed in part by the ATM programme ‘Biomineralisation’ of the MNHN funded by the Ministère délégué à l’Enseignement supérieur et à la Recherche. M. O’Neill was supported by an Erasmus fellowship from the European Community.

References

  1. Auzoux S, Domart-Coulon I, Doumenc D (1993) Gill cell cultures of the butterfish clam Ruditapes decussatus. J Mar Biotechnol 1:79–81Google Scholar
  2. Auzoux-Bordenave S, Domart-Coulon I (2010) Marine invertebrate cell cultures as tools for biomineralization studies. Journal des Sciences Halieutique et Aquatique 2:42–47Google Scholar
  3. Auzoux-Bordenave S, Fouchereau-Peron M, Helléouet M-N, Doumenc D (2007) CGRP regulates the activity of mantle cells and hemocytes in abalone primary cell cultures (Haliotis tuberculata). J Shellfish Res 26:887–894CrossRefGoogle Scholar
  4. Auzoux-Bordenave S, Badou A, Gaume B, Berland S, Helléouet M-N, Milet C, Huchette S (2010) Ultrastructure, chemistry and mineralogy of the growing shell of the European abalone Haliotis tuberculata. J Struct Biol 171:277–290. doi: 10.1016/j.jsb.2010.05.012 CrossRefGoogle Scholar
  5. Awaji M, Machii A (2011) Fundamental studies on in vivo and in vitro pearl formation—contribution of outer epithelial cells of pearl oyster mantle and pearl sacs. Aqua-BioSci Monogr 4:1–39. doi: 10.5047/absm.2011.00401.0001 CrossRefGoogle Scholar
  6. Awaji M, Suzuki T (1998) Monolayer formation and DNA synthesis of the outer epithelial cells from pearl oyster mantle in coculture with amebocytes. In Vitro Cell Dev Biol Anim 34:486–491CrossRefGoogle Scholar
  7. Bédouet L, Marie A, Berland S, Marie B, Auzoux-Bordenave S, Marin F, Milet C (2012) Proteomic strategy for identifying mollusc shell proteins using mild chemical degradation and trypsin digestion of insoluble organic shell matrix: a pilot study on Haliotis tuberculata. Mar Biotechnol 14:446–458. doi: 10.1007/s10126-011-9425-0 CrossRefGoogle Scholar
  8. Boulo V, Hervio D, Morvan A, Bachere E, Mialhe E (1991) In vitro culture of mollusc hemocytes. Functional study of burst respiratory activity and analysis of interactions with protozoan and procaryotic pathogens. In Vitro 27:42ACrossRefGoogle Scholar
  9. Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159Google Scholar
  10. Dauphin Y, Cuif J-P, Mutvei H, Denis A (1989) Mineralogy, chemistry and ultrastructure of the external shell-layer in ten species of Haliotis with reference to Haliotis tuberculata (Mollusca: Archaeogastropoda). Bull Geol Inst University Uppsala 15:7–38Google Scholar
  11. Domart-Coulon I, Auzoux-Bordenave S, Doumenc D, Khalanski M (2000) Cytotoxicity assessment of antibiofouling compounds and by-products in marine bivalve cell cultures. Toxicol In Vitro 14:245–251. doi: 10.1016/s0887-2333(00)00011-4 CrossRefGoogle Scholar
  12. Duvail L, Fouchereau-Peron M (2001) Calcium metabolism related markers during the growth of Haliotis tuberculata. Invertebr Reprod Dev 40:209–216CrossRefGoogle Scholar
  13. Farcy E, Serpentini A, Fiévet B, Lebel J-M (2007) Identification of cDNAs encoding HSP70 and HSP90 in the abalone Haliotis tuberculata: transcriptional induction in response to thermal stress in hemocyte primary culture. Comp Biochem Physiol B: Biochem Mol Biol 146:540–550. doi: 10.1016/j.cbpb.2006.12.006 CrossRefGoogle Scholar
  14. Fleury C, Marin F, Marie B, Luquet G, Thomas J, Josse C, Serpentini A, Lebel JM (2008) Shell repair process in the green ormer Haliotis tuberculata: a histological and microstructural study. Tissue Cell 40:207–218CrossRefGoogle Scholar
  15. Gaume B, Fouchereau-Peron M, Badou A, Helléouet M-N, Huchette S, Auzoux-Bordenave S (2011) Biomineralization markers during early shell formation in the European abalone Haliotis tuberculata, Linnaeus. Mar Biol 158:341–353. doi: 10.1007/s00227-010-1562-x CrossRefGoogle Scholar
  16. Gaume B, Auzoux-Bordenave S, Bourgougnon N, Roig B, Le Bot B, Bedoux G (2012) In vitro effects of triclosan and methyl-triclosan on the marine gastropod Haliotis tuberculata. Comp Biochem Physiol C: Toxicol Pharmacol 156:87–94CrossRefGoogle Scholar
  17. Gaume B, Denis F, Van Wormhoudt A, Huchette S, Jackson DJ, Auzoux-Bordenave S (2013) Characterization and expression of Lustrin A biomineralizing gene during shell formation of the European abalone Haliotis tuberculata, in preparationGoogle Scholar
  18. Gong N, Li Q, Huang J, Fang Z, Zhang G, Xie L, Zhang R (2008a) Culture of outer epithelial cells from mantle tissue to study shell matrix protein secretion for biomineralization. Cell Tissue Res 333:493–501CrossRefGoogle Scholar
  19. Gong N, Ma Z, Li Q, Li Q, Yan Z, Xie L, Zhang R (2008b) Characterization of calcium deposition and shell matrix protein secretion in primary mantle tissue culture from the marine pearl oyster Pinctada fucata. Mar Biotechnol 10:457–465CrossRefGoogle Scholar
  20. Jackson D, McDougall C, Green K, Simpson F, Worheide G, Degnan B (2006) A rapidly evolving secretome builds and patterns a sea shell. BMC Biol 4:40CrossRefGoogle Scholar
  21. Jackson D, Worheide G, Degnan B (2007) Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evol Biol 7:160CrossRefGoogle Scholar
  22. Jardillier E, Rousseau M, Gendron-Badou A, Fröhlich F, Smith D, Martin M, Helléouet M-N, Huchette S, Doumenc D, Auzoux-Bordenave S (2008) A morphological and structural study of the larval shell from the abalone Haliotis tuberculata. Mar Biol 154:735–744CrossRefGoogle Scholar
  23. Kleinschuster SJ, Parent J, Walker CW, Farley CA (1996) A cardiac cell line from Mya arenaria (Linnaeus, 1759). J Shellfish Res 15:695–707Google Scholar
  24. Le Roy N, Marie B, Gaume B, Guichard N, Delgado S, Zanella-Cléon I, Becchi M, Auzoux-Bordenave S, Sire J-Y, Marin F (2012) Identification of two carbonic anhydrases in the mantle of the European abalone Haliotis tuberculata (Gastropoda, Haliotidae): phylogenetic implications. J Exp Zool B Mol Dev Evol 318B:353–367CrossRefGoogle Scholar
  25. Lin A, Meyers MA (2005) Growth and structure in abalone shell. Mater Sci Eng A 390:27–41CrossRefGoogle Scholar
  26. Machii A, Wada K (1989) Some marine invertebrates tissue culture. In: Mitsuhashi J (ed) Invertebrate cell system applications, vol 2. CRC Press, Boca Raton, pp 225–233Google Scholar
  27. Mann K, Siedler F, Treccani L, Heinemann F, Fritz M (2007) Perlinhibin, a cysteine-, histidine-, and arginine-rich miniprotein from abalone (Haliotis laevigata) nacre, inhibits in vitro calcium carbonate crystallization. Biophys J 93:1246–1254CrossRefGoogle Scholar
  28. Marie B, Marie A, Jackson D, Dubost L, Degnan B, Milet C, Marin F (2010) Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell. Proteome Sci 8:54CrossRefGoogle Scholar
  29. Michenfelder M, Fu G, Lawrence C, Weaver JC, Wustman BA, Taranto L, Evans JS, Morse DE (2003) Characterization of two molluscan crystal-modulating biomineralization proteins and identification of putative mineral binding domains. Biopolymers 70:522–533. doi: 10.1002/bip.10536 CrossRefGoogle Scholar
  30. Miyazaki Y, Usui T, Kajikawa A, Hishiyama H, Matsuzawa N, Nishida T, Machii A, Samata T (2008) Daily oscillation of gene expression associated with nacreous layer formation. Front Mater Sci Chin 2:162–166CrossRefGoogle Scholar
  31. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi: 10.1016/0022-1759(83)90303-4 CrossRefGoogle Scholar
  32. Mount AS, Wheeler AP, Paradkar RP, Snider D (2004) Hemocyte-mediated shell mineralization in the eastern oyster. Science 304:297–300CrossRefGoogle Scholar
  33. Nakahara H, Bevelander G, Kakei M (1982) Electron microscopic and amino acid studies on the outer and inner shell layers of Haliotis rufescens. Venus (Japan. J Malacol) 41:33–46Google Scholar
  34. Rinkevich B (1999) Cell cultures from marine invertebrates: obstacles, new approaches and recent improvements. J Biotechnol 70:133–153CrossRefGoogle Scholar
  35. Serpentini A, Ghayor C, Poncet JM, Hebert V, Galéra P, Pujol JP, Boucaud-Camou E, Lebel J-M (2000) Collagen study and regulation of the de novo synthesis by IgF-I in hemocytes from the gastropod mollusc, Haliotis tuberculata. J Exp Zool 287:275–284CrossRefGoogle Scholar
  36. Shen X, Belcher AM, Hansma PK, Stucky GD, Morse DE (1997) Molecular cloning and characterization of Lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J Biol Chem 272:32472–32481. doi: 10.1074/jbc.272.51.32472 CrossRefGoogle Scholar
  37. Suja CP, Dharmaraj S (2005) In vitro culture of mantle tissue of the abalone Haliotis varia Linnaeus. Tissue Cell 37:1–10CrossRefGoogle Scholar
  38. Travers M-A, Mirella da Silva P, Le Goic N, Marie D, Donval A, Huchette S, Koken M, Paillard C (2008) Morphologic, cytometric and functional characterization of abalone (Haliotis tuberculata) hemocytes. Fish Shellfish Immunol 24:400–411CrossRefGoogle Scholar
  39. Treccani L, Mann K, Heinemann F, Fritz M (2006) Perlwapin, an abalone nacre protein with three four-disulfide core (whey acidic protein) domains, inhibits the growth of calcium carbonate crystals. Biophys J 91:2601–2608CrossRefGoogle Scholar
  40. Weiss IM, Kaufmann S, Mann K, Fritz M (2000) Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusc Haliotis laevigata. Biochem Biophys Res Commun 267:17–21CrossRefGoogle Scholar
  41. Wilbur KM (1964) Shell formation and regeneration. In: Wilbur KM, Yonge CM (eds) Physiology of Mollusca. Academic Press, New York, pp 243–282CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Matthew O’Neill
    • 1
    • 2
  • Béatrice Gaume
    • 1
    • 5
  • Françoise Denis
    • 1
    • 3
  • Stéphanie Auzoux-Bordenave
    • 1
    • 4
    Email author
  1. 1.UMR BOREA (Biologie des Organismes et Ecosystèmes Aquatiques) MNHN/CNRS-7208/IRD-207/UPMCMuséum national d’Histoire naturelleConcarneauFrance
  2. 2.Keele UniversityStaffordshireUK
  3. 3.Université du MaineLe MansFrance
  4. 4.Université Pierre et Marie CurieParisFrance
  5. 5.DYNECAR, EA 926Université des Antilles et de la Guyane, Campus de FouillolePointe à PitreFrance

Personalised recommendations