, Volume 65, Issue 5, pp 749–758 | Cite as

Cell tracking and velocimetric parameters analysis as an approach to assess activity of mussel (Mytilus edulis) hemocytes in vitro

Original Research


Hemocytes constitute the key element of innate immunity in bivalves, being responsible for secretion of antimicrobial peptides and release of zymogens from the prophenoloxidase system within the hemolymph compartment, reactive oxygen species production and phagocytosis. Hemocytes are found (and collected) as cells in suspension in circulating hemolymph. Hemocytes are adherent cells as well, infiltrating tissues and migrating to infected areas. In the present study, we applied an approach based on fluorescent staining and nuclei-tracking to determine migration velocity of hemocytes from the blue mussel, Mytilus edulis, in culture. Freshly collected hemocytes attached to substrate and start to move spontaneously in few minutes. Two main hemocyte morphologies can be observed: small star-shaped cells which were less motile and spread granular cells with faster migrations. Cell-tracking was combined to MTT mitochondria metabolic rate measurements in order to monitor global cell population activity over 4 days of culture. A transient peak of cell activity was recorded after 24–48 h of culture, corresponding to a speed up of cell migration. Videomicroscopy and cell tracking techniques provide new tools to characterize activity of mussel immunocytes in culture. Our analysis of hemocyte migration reveals that motility is very sensitive to cell environmental factors.


Marine Invertebrate Primary cultures Motility Cell-tracking Innate Immunity Molluscs 



This work was supported by grants from the State/Region Plan Contract (CPER) allocated through the Research Federation FED 4116 SCALE (Sciences Appliquées à L’Environnement). Damien Rioult were recipients for doctoral fellowships from the Conseil Regional de Haute-Normandie.

Supplementary material

Supplementary material 1 (MPG 1442 kb)

Supplementary material 2 (MPG 676 kb)

Supplementary material 3 (MPG 1782 kb)

Supplementary material 4 (MPG 3070 kb)

Supplementary material 5 (MPG 814 kb)

Supplementary material 6 (MPG 264 kb)


  1. Abadie V, Badell E, Douillard P, Ensergueix D, Leenen PJ, Tanguy M, Fiette L, Saeland S, Gicquel B, Winter N (2005) Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 106:1843–1850. doi: 10.1182/blood-2005-03-1281 CrossRefGoogle Scholar
  2. Cajaraville MP, Pal SG (1995) Morphofunctional study of the haemocytes of the bivalve mollusc Mytilus galloprovincialis with emphasis on the endolysosomal compartment. Cell Struct Funct 20:355–367CrossRefGoogle Scholar
  3. Carballal MJ, Lopez C, Azevedo C, Villalba A (1997) Enzymes involved in defense functions of hemocytes of mussel Mytilus galloprovincialis. J Invertebr Pathol 70:96–105CrossRefGoogle Scholar
  4. Chtanova T, Schaeffer M, Han SJ, van Dooren GG, Nollmann M, Herzmark P, Chan SW, Satija H, Camfield K, Aaron H, Striepen B, Robey EA (2008) Dynamics of neutrophil migration in lymph nodes during infection. Immunity 29:487–496. doi: 10.1016/j.immuni.2008.07.012 CrossRefGoogle Scholar
  5. Costa MM, Prado-Alvarez M, Gestal C, Li H, Roch P, Novoa B, Figueras A (2009) Functional and molecular immune response of Mediterranean mussel (Mytilus galloprovincialis) haemocytes against pathogen-associated molecular patterns and bacteria. Fish Shellfish Immunol 26:515–523CrossRefGoogle Scholar
  6. Craft JA, Gilbert JA, Temperton B, Dempsey KE, Ashelford K, Tiwari B, Hutchinson TH, Chipman JK (2010) Pyrosequencing of Mytilus galloprovincialis cDNAs: tissue-specific expression patterns. PLoS ONE 5:e8875. doi: 10.1371/journal.pone.0008875 CrossRefGoogle Scholar
  7. Donaghy L, Volety AK (2011) Functional and metabolic characterization of hemocytes of the green mussel, Perna viridis: in vitro impacts of temperature. Fish Shellfish Immunol 31:808–814Google Scholar
  8. Friebel B, Renwrantz L (1995) Application of density gradient centrifugation for separation of eosinophilic and basophilic hemocytes from Mytilus edulis and characterization of both cell groups. Comp Biochem Physiol A Mol Integr Physiol 112A:81–90Google Scholar
  9. Garcia-Garcia E, Prado-Alvarez M, Novoa B, Figueras A, Rosales C (2008) Immune responses of mussel hemocyte subpopulations are differentially regulated by enzymes of the PI 3-K, PKC, and ERK kinase families. Dev Comp Immunol 32:637–653CrossRefGoogle Scholar
  10. Gauthier-Clerc S, Boily I, Fournier M, Lemarchand K (2013) In vivo exposure of Mytilus edulis to living enteric bacteria: a threat for immune competency? Environ Sci Pollut Res Int 20(2):612–620. doi: 10.1007/s11356-012-1200-x Google Scholar
  11. Germain RN, Robey EA, Cahalan MD (2012) A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336:1676–1681. doi: 10.1126/science.1221063 CrossRefGoogle Scholar
  12. Graham DB, Zinselmeyer BH, Mascarenhas F, Delgado R, Miller MJ, Swat W (2009) ITAM signaling by Vav family Rho guanine nucleotide exchange factors regulates interstitial transit rates of neutrophils in vivo. PLoS ONE 4:e4652. doi: 10.1371/journal.pone.0004652 CrossRefGoogle Scholar
  13. Hine P (1999) The inter-relationships of bivalve haemocytes. Fish Shellfish Immunol 9:367–385CrossRefGoogle Scholar
  14. Hoher N, Kohler A, Strand J, Broeg K (2012) Effects of various pollutant mixtures on immune responses of the blue mussel (Mytilus edulis) collected at a salinity gradient in Danish coastal waters. Mar Environ Res 75:35–44. doi: 10.1016/j.marenvres.2011.11.003 CrossRefGoogle Scholar
  15. Hughes TK Jr, Smith EM, Barnett JA, Charles R, Stefano GB (1991) Lipopolysaccharide and opioids activate distinct populations of Mytilus edulis immunocytes. Cell Tissue Res 264:317–320CrossRefGoogle Scholar
  16. Kreisel D, Nava RG, Li W, Zinselmeyer BH, Wang B, Lai J, Pless R, Gelman AE, Krupnick AS, Miller MJ (2010) In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc Natl Acad Sci USA 107:18073–18078. doi: 10.1073/pnas.1008737107 CrossRefGoogle Scholar
  17. Le Foll F, Rioult D, Boussa S, Pasquier J, Dagher Z, Leboulenger F (2010) Characterisation of Mytilus edulis hemocyte subpopulations by single cell time-lapse motility imaging. Fish Shellfish Immunol 28:372–386. doi: 10.1016/j.fsi.2009.11.011 CrossRefGoogle Scholar
  18. Lelong IH, Petegnief V, Rebel G (1992) Neuronal cells mature faster on polyethyleneimine coated plates than on polylysine coated plates. J Neurosci Res 32:562–568. doi: 10.1002/jnr.490320411 CrossRefGoogle Scholar
  19. Li H, Parisi MG, Toubiana M, Cammarata M, Roch P (2008) Lysozyme gene expression and hemocyte behaviour in the Mediterranean mussel, Mytilus galloprovincialis, after injection of various bacteria or temperature stresses. Fish Shellfish Immunol 25:143–152CrossRefGoogle Scholar
  20. Magazine HI, Liu Y, Bilfinger TV, Fricchione GL, Stefano GB (1996) Morphine-induced conformational changes in human monocytes, granulocytes, and endothelial cells and in invertebrate immunocytes and microglia are mediated by nitric oxide. J Immunol 156(12):4845–4850Google Scholar
  21. Malagoli D, Casarini L, Sacchi S, Ottaviani E (2007) Stress and immune response in the mussel Mytilus galloprovincialis. Fish Shellfish Immunol 23:171–177CrossRefGoogle Scholar
  22. Novas A, Barcia R, Ramos-Martinez JI (2007) Nitric oxide production by haemocytes from Mytilus galloprovincialis shows seasonal variations. Fish Shellfish Immunol 23:886–891CrossRefGoogle Scholar
  23. Parisi MG, Li H, Jouvet LB, Dyrynda EA, Parrinello N, Cammarata M, Roch P (2008) Differential involvement of mussel hemocyte sub-populations in the clearance of bacteria. Fish Shellfish Immunol 25:834–840CrossRefGoogle Scholar
  24. Philipp EE, Kraemer L, Melzner F, Poustka AJ, Thieme S, Findeisen U, Schreiber S, Rosenstiel P (2012) Massively parallel RNA sequencing identifies a complex immune gene repertoire in the lophotrochozoan Mytilus edulis. PLoS ONE 7:e33091. doi: 10.1371/journal.pone.0033091 CrossRefGoogle Scholar
  25. Ponder W, Lindberg D (2008) Chap. 1. In: Ponder W, Lindberg D (Eds.) Phylogeny and evolution of Mollusca, University of Calfornia Press, pp 1–18Google Scholar
  26. Venier P, Varotto L, Rosani U, Millino C, Celegato B, Bernante F, Lanfranchi G, Novoa B, Roch P, Figueras A, Pallavicini A (2011) Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis. BMC Genomics 12:69CrossRefGoogle Scholar
  27. Voccia I, Krzystyniak K, Dunier M, Flipo D, Fournier M (1994) In vitro mercury-related cytotoxicity and functional impairment of the immune cells of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 29:37–48CrossRefGoogle Scholar
  28. Winston GW, Moore MN, Kirchin MA, Soverchia C (1996) Production of reactive oxygen species by hemocytes from the marine mussel, Mytilus edulis: lysosomal localization and effect of xenobiotics. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 113:221–229CrossRefGoogle Scholar
  29. Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PW, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Loso T, Du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, Du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang Q, Steinberg CE, Wang H, Qian L, Liu X, Yin Y (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54. doi: 10.1038/nature11413 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Laboratory of Ecotoxicology, EA 3222, FED 4116 SCALEUniversity of Le HavreLe Havre CedexFrance
  2. 2.CNRS INEE, FRE3484 BioMEA Biologie des Mollusques marins et des Ecosystèmes Associés, IBFAUniversity of CaenCaen CedexFrance

Personalised recommendations