, Volume 65, Issue 5, pp 803–809 | Cite as

The transfer of human artificial chromosomes via cryopreserved microcells

  • Narumi Uno
  • Katsuhiro Uno
  • Susi Zatti
  • Kana Ueda
  • Masaharu Hiratsuka
  • Motonobu Katoh
  • Mitsuo OshimuraEmail author
Technical Note


Microcell-mediated chromosome transfer (MMCT) technology enables a single and intact mammalian chromosome or megabase-sized chromosome fragments to be transferred from donor to recipient cells. The conventional MMCT method is performed immediately after the purification of microcells. The timing of the isolation of microcells and the preparation of recipient cells is very important. Thus, ready-made microcells can improve and simplify the process of MMCT. Here, we established a cryopreservation method to store microcells at −80 °C, and compared these cells with conventionally- (immediately-) prepared cells with respect to the efficiency of MMCT and the stability of a human artificial chromosome (HAC) transferred to human HT1080 cells. The HAC transfer in microcell hybrids was confirmed by FISH analysis. There was no significant difference between the two methods regarding chromosome transfer efficiency and the retention rate of HAC. Thus, cryopreservation of ready-to-use microcells provides an improved and simplified protocol for MMCT.


Chromosome Human artificial chromosome Microcell-mediated chromosome transfer HAC Cancer Synthetic biology Gene delivery 



Human artificial chromosome


P1 phage-derived artificial chromosome


Bacterial artificial chromosome


Yeast artificial chromosome


Induced pluripotent stem cell


Mesenchemal stem cell


Polyethylene glycol






Microcell mediated chromosome transfer


Microcell mediated chromosome transfer using Measles virus fusogen


Enhanced green fluorescent protein





This study was supported by Regional Innovation Strategy Support Program from The Ministry of Education, Culture, Sports, Science, and Technology of Japan (M. O.), Japan Science and Technology Agency, CREST (M. O.).

Author contributions

N. U. designed and performed most of the experiments. K. U., S. Z., K. U. and H. M. performed the experiments and analyzed the data. M. O. designed the experiments and supervised the entire project. N. U. and M. O. wrote the manuscript.

Conflict of interest

The authors declare no conflicts of interest.


  1. Hiratsuka M, Uno N, Ueda K, Kurosaki H, Imaoka N, Kazuki K, Ueno E, Akakura Y, Katoh M, Osaki M, Kazuki Y, Nakagawa M, Yamanaka S, Oshimura M (2011) Integration-free iPS cells engineered using human artificial chromosome vectors. PLoS ONE 6:e25961. doi: 10.1371/journal.pone.0025961 CrossRefGoogle Scholar
  2. Hoshiya H, Kazuki Y, Abe S, Takiguchi M, Kajitani N, Watanabe Y, Yoshino T, Shirayoshi Y, Higaki K, Messina G, Cossu G, Oshimura M (2009) A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene. Mol Ther 17:309–317. doi: 10.1038/mt.2008.253 CrossRefGoogle Scholar
  3. Ikeno M, Masumoto H, Okazaki T (1994) Distribution of CENP-B boxes reflected in crest centromere antigenic sites on long-range alpha-satellite DNA arrays of human-chromosome-21. Hum Mol Genet 3:1245–1257. doi: 10.1093/hmg/3.8.1245 CrossRefGoogle Scholar
  4. Kakeda M, Nagata K, Osawa K, Matsuno H, Hiratsuka M, Sano A, Okazaki A, Shitara S, Nishikawa S, Masuya A, Hata T, Wako S, Osaki M, Kazuki Y, Oshimura M, Tomizuka K (2011) A new chromosome 14-based human artificial chromosome (HAC) vector system for efficient transgene expression in human primary cells. Biochem Biophys Res Commun 415:439–444. doi: 10.1016/j.bbrc.2011.10.088 CrossRefGoogle Scholar
  5. Katoh M, Kazuki Y, Kazuki K, Kajitani N, Takiguchi M, Nakayama Y, Nakamura T, Oshimura M (2010) Exploitation of the interaction of measles virus fusogenic envelope proteins with the surface receptor CD46 on human cells for microcell-mediated chromosome transfer. BMC Biotechnol 10:37. doi: 10.1186/1472-6750-10-37 CrossRefGoogle Scholar
  6. Kazuki Y, Oshimura M (2011) Human artificial chromosomes for gene delivery and the development of animal models. Mol Ther 19:1591–1601. doi: 10.1038/mt.2011.136 CrossRefGoogle Scholar
  7. Kazuki Y, Hiratsuka M, Takiguchi M, Osaki M, Kajitani N, Hoshiya H, Hiramatsu K, Yoshino T, Kazuki K, Ishihara C, Takehara S, Higaki K, Nakagawa M, Takahashi K, Yamanaka S, Oshimura M (2010) Complete genetic correction of iPS cells from duchenne muscular dystrophy. Mol Ther 18:386–393. doi: 10.1038/mt.2009.274 CrossRefGoogle Scholar
  8. Kazuki Y, Hoshiya H, Takiguchi M, Abe S, Iida Y, Osaki M, Katoh M, Hiratsuka M, Shirayoshi Y, Hiramatsu K, Ueno E, Kajitani N, Yoshino T, Kazuki K, Ishihara C, Takehara S, Tsuji S, Ejima F, Toyoda A, Sakaki Y, Larionov V, Kouprina N, Oshimura M (2011) Refined human artificial chromosome vectors for gene therapy and animal transgenesis. Gene Ther 18:384–393. doi: 10.1038/gt.2010.147 CrossRefGoogle Scholar
  9. Kim JH, Kononenko A, Erliandri I, Kim TA, Nakano M, Iida Y, Barrett JC, Oshimura M, Masumoto H, Earnshaw WC, Larionov V, Kouprina N (2011) Human artificial chromosome (HAC) vector with a conditional centromere for correction of genetic deficiencies in human cells. Proc Natl Acad Sci USA 108:20048–20053. doi: 10.1073/pnas.1114483108 CrossRefGoogle Scholar
  10. Koi M, Shimizu M, Morita H, Yamada H, Oshimura M (1989) Construction of mouse A9 clones containing a single human-chromosome tagged with neomycin-resistance gene via microcell fusion. Jpn J Cancer Res 80:413–418CrossRefGoogle Scholar
  11. Kouprina N, Earnshaw WC, Masumoto H, Larionov V (2013) A new generation of human artificial chromosomes for functional genomics and gene therapy. Cell Mol Life Sci 70:1135–1148Google Scholar
  12. Kurosaki H, Hiratsuka M, Imaoka N, Iida Y, Uno N, Kazuki Y, Ishihara C, Yakura Y, Mimuro J, Sakata Y, Takeya H, Oshimura M (2011) Integration-free and stable expression of FVIII using a human artificial chromosome. J Hum Genet 56:727–733. doi: 10.1038/jhg.2011.88 CrossRefGoogle Scholar
  13. O’Connor TP, Crystal RG (2006) Genetic medicines: treatment strategies for hereditary disorders. Nat Rev Genet 7:261–276. doi: 10.1038/nrg1829 CrossRefGoogle Scholar
  14. Ren X, Katoh M, Hoshiya H, Kurimasa A, Inoue T, Ayabe F, Shibata K, Toguchida J, Oshimura M (2005) A novel human artificial chromosome vector provides effective cell lineage-specific transgene expression in human mesenchymal stem cells. Stem Cells 23:1608–1616. doi: 10.1634/stemcells.2005-0021 CrossRefGoogle Scholar
  15. Shinohara T, Tomizuka K, Miyabara S, Takehara S, Kazuki Y, Inoue J, Katoh M, Nakane H, Iino A, Ohguma A, Ikegami S, Inokuchi K, Ishida I, Reeves RH, Oshimura M (2001) Mice containing a human chromosome 21 model behavioral impairment and cardiac anomalies of Down’s syndrome. Hum Mol Genet 10:1163–1175. doi: 10.1093/hmg/10.11.1163 CrossRefGoogle Scholar
  16. Tomizuka K, Yoshida H, Uejima H, Kugoh H, Sato K, Ohguma A, Hayasaka M, Hanaoka K, Oshimura M, Ishida I (1997) Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 16:133–143. doi: 10.1038/ng0697-133 CrossRefGoogle Scholar
  17. Tomizuka K, Shinohara T, Yoshida H, Uejima H, Ohguma A, Tanaka S, Sato K, Oshimura M, Ishida I (2000) Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci USA 97:722–727. doi: 10.1073/pnas.97.2.722 CrossRefGoogle Scholar
  18. Yamaguchi S, Kazuki Y, Nakayama Y, Nanba E, Oshimura M, Ohbayashi T (2011) A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector. PLoS ONE 6:e17267. doi: 10.1371/journal.pone.0017267 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Narumi Uno
    • 1
  • Katsuhiro Uno
    • 1
  • Susi Zatti
    • 2
  • Kana Ueda
    • 1
  • Masaharu Hiratsuka
    • 1
  • Motonobu Katoh
    • 1
  • Mitsuo Oshimura
    • 1
    • 3
    Email author
  1. 1.Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical ScienceTottori UniversityTottoriJapan
  2. 2.Department of Industrial EngineeringUniversity of PadovaPaduaItaly
  3. 3.Chromosome Engineering Research CenterTottori UniversityTottoriJapan

Personalised recommendations