Skip to main content
Log in

The simulated microgravity enhances multipotential differentiation capacity of bone marrow mesenchymal stem cells

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Multi-differentiation capability is an essential characteristic of bone marrow mesenchymal stem cells (BMSCs). Method on obtaining higher-quality stem cells with an improved differentiation potential has gained significant attention for the treatment of clinical diseases and developmental biology. In our study, we investigated the multipotential differentiation capacity of BMSCs under simulated microgravity (SMG) condition. F-actin staining found that cytoskeleton took on a time-dependent change under SMG condition, which caused spindle to round morphological change of the cultured cells. Quantitative PCR and Western Blotting showed the pluripotency marker OCT4 was up-regulated in the SMG condition especially after SMG of 72 h, which we observed would be the most appropriate SMG duration for enhancing pluripotency of BMSCs. After dividing BMSCs into normal gravity (NG) group and SMG group, we induced them respectively in endothelium oriented, adipogenic and neuronal induction media. Immunostaining and Western Blotting found that endothelium oriented differentiated BMSCs expressed higher VWF and CD31 in the SMG group than in the NG group. The neuron-like cells derived from BMSCs in the SMG group also expressed higher level of MAP2 and NF-H. Furthermore, the quantity of induced adipocytes increased in the SMG group compared to the NG group shown by Oil Red O staining, The expression of PPARγ2 increased significantly under SMG condition. Therefore, we demonstrated that SMG could promote BMSCs to differentiate into many kinds of cells and predicted that enhanced multi-potential differentiation capacity response in BMSCs following SMG might be relevant to the changes of cytoskeleton and the stem cell marker OCT4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SMG:

Simulated microgravity

NG:

Normal gravity

MSC:

Mesenchymal stem cell

BMSC:

Bone marrow mesenchymal stem cell

VWF:

Von Willebrand factor

MAP2:

Microtubule-associated protein 2

NF-H:

Neurofilament heavy chain

OCT4:

Octamer-binding transcription factor 4

References

  • Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584

    Article  CAS  Google Scholar 

  • Basso N, Bellows CG, Heersche JN (2005) Effect of simulated weightlessness on osteoprogenitor cell number and proliferation in young and adult rats. Bone 36:173–183

    Article  CAS  Google Scholar 

  • Chen J, Liu R, Yang Y, Li J, Zhang X, Li J, Wang Z, Ma J (2011) The simulated microgravity enhances the differentiation of mesenchymal stem cells into neurons. Neurosci Lett 505:171–175

    Article  CAS  Google Scholar 

  • Colter DC, Class R, DiGirolamo CM, Prockop DJ (2000) Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA 97:3213–3218

    Article  CAS  Google Scholar 

  • Crisostomo PR, Wang M, Wairiuko GM, Morrell ED, Terrell AM, Seshadri P, Nam UH, Meldrum DR (2006) High passage number of stem cells adversely affects stem cell activation and myocardial protection. Shock 26:575–580

    Article  CAS  Google Scholar 

  • Gershkovich PM, Gershkovich I, Buravkova LB (2011) Expression of cytoskeleton genes in culture of human mesenchymal stromal cells in different periods of simulating the effects of microgravity. Aviakosm Ekolog Med 45(4):39–41

    Google Scholar 

  • Graziano A, D’Aquino R, Cusella-De AM, Laino G, Piattelli A, Pacifici M, De Rosa A, Papaccio G (2007) Concave pit-containing scaffold surfaces improve stem cell-derived osteoblast performance and lead to significant bone tissue formation. PLoS One 2:e496

    Article  Google Scholar 

  • Hosu BG, Mullen SF, Critser JK, Forgacs G (2008) Reversible disassembly of the actin cytoskeleton improves the survival rate and developmental competence of cryopreserved mouse oocytes. PLoS One 3:e2787

    Article  Google Scholar 

  • Jin Y, Liu Y, Antonyak M, Peng X (2012) Isolation and characterization of vascular endothelial cells from murine heart and lung. Methods Mol Biol 843:147–154

    Article  CAS  Google Scholar 

  • Kasper G, Dankert N, Tuischer J, Hoeft M, Gaber T, Glaeser JD, Zander D, Tschirschmann M, Thompson M, Matziolis G, Duda GN (2007) Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells 25:903–910

    Article  CAS  Google Scholar 

  • Kilian KA, Bugarija B, Lahn BT, Mrksich M (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci USA 107:4872–4877

    Article  CAS  Google Scholar 

  • Klaus DM (2001) Clinostats and bioreactors. Gravit Space Biol Bull 14:55–64

    CAS  Google Scholar 

  • Kodama H, Inoue T, Watanabe R, Yasuoka H, Kawakami Y, Ogawa S, Ikeda Y, Mikoshiba K, Kuwana M (2005) Cardiomyogenic potential of mesenchymal progenitors derived from human circulating CD14+ monocytes. Stem Cells Dev 14:676–686

    Article  CAS  Google Scholar 

  • Kodama H, Inoue T, Watanabe R, Yasutomi D, Kawakami Y, Ogawa S, Mikoshiba K, Ikeda Y, Kuwana M (2006) Neurogenic potential of progenitors derived from human circulating CD14+ monocytes. Immunol Cell Biol 84:209–217

    Article  Google Scholar 

  • Koike M, Shimokawa H, Kanno Z, Ohya K, Soma K (2005) Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2. J Bone Miner Metab 23:219–225

    Article  Google Scholar 

  • Li J, Zhang S, Chen J, Du T, Wang Y, Wang Z (2009) Modeled microgravity causes changes in the cytoskeleton and focal adhesions, and decreases in migration in malignant human MCF-7 cells. Protoplasma 238:23–33

    Article  Google Scholar 

  • Mauney JR, Sjostorm S, Blumberg J, Horan R, O’Leary JP, Vunjak-Novakovic G, Volloch V, Kaplan DL (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-d partially demineralized bone scaffolds in vitro. Calcif Tissue Int 74:458–468

    Article  CAS  Google Scholar 

  • McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495

    Article  CAS  Google Scholar 

  • McBride SH, Falls T, Knothe TM (2008) Modulation of stem cell shape and fate b: mechanical modulation of cell shape and gene expression. Tissue Eng Part A 14:1573–1580

    Article  CAS  Google Scholar 

  • Muruganandan S, Parlee SD, Rourke JL, Ernst MC, Goralski KB, Sinal CJ (2011) Chemerin, a novel peroxisome proliferator-activated receptor gamma (PPARgamma) target gene that promotes mesenchymal stem cell adipogenesis. J Biol Chem 286:23982–23995

    Article  CAS  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    Article  CAS  Google Scholar 

  • Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384

    Article  Google Scholar 

  • Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42–60

    CAS  Google Scholar 

  • Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25:2896–2902

    Article  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  CAS  Google Scholar 

  • Ruggeri ZM (2003) Von Willebrand factor, platelets and endothelial cell interactions. J Thromb Haemost 1:1335–1342

    Article  CAS  Google Scholar 

  • Tamama K, Fan VH, Griffith LG, Blair HC, Wells A (2006) Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells 24:686–695

    Article  CAS  Google Scholar 

  • Tamama K, Sen CK, Wells A (2008) Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway. Stem Cells Dev 17:897–908

    Article  CAS  Google Scholar 

  • Xiang Y, Zheng Q, Jia B, Huang G, Xie C, Pan J, Wang J (2007) Ex vivo expansion, adipogenesis and neurogenesis of cryopreserved human bone marrow mesenchymal stem cells. Cell Biol Int 31:444–450

    Article  CAS  Google Scholar 

  • Yoshikawa T, Peel SA, Gladstone JR, Davies JE (1997) Biochemical analysis of the response in rat bone marrow cell cultures to mechanical stimulation. Biomed Mater Eng 7:369–377

    CAS  Google Scholar 

  • Yuge L, Hide I, Kumagai T, Kumei Y, Takeda S, Kanno M, Sugiyama M, Kataoka K (2003) Cell differentiation and p38(MAPK) cascade are inhibited in human osteoblasts cultured in a three-dimensional clinostat. In Vitro Cell Dev Biol Anim 39:89–97

    Article  CAS  Google Scholar 

  • Yuge L, Kajiume T, Tahara H, Kawahara Y, Umeda C, Yoshimoto R, Wu SL, Yamaoka K, Asashima M, Kataoka K, Ide T (2006) Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation. Stem Cells Dev 15:921–929

    Article  CAS  Google Scholar 

  • Yuge L, Sasaki A, Kawahara Y, Wu SL, Matsumoto M, Manabe T, Kajiume T, Takeda M, Magaki T, Takahashi T, Kurisu K, Matsumoto M (2011) Simulated microgravity maintains the undifferentiated state and enhances the neural repair potential of bone marrow stromal cells. Stem Cells Dev 20:893–900

    Article  Google Scholar 

  • Zhang X, Nan Y, Wang H, Chen J, Wang N, Xie J, Ma J, Wang Z (2013) Model microgravity enhances endothelium differentiation of mesenchymal stem cells. Naturwissenschaften 100:125–133

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out in the Physiology laboratory and State Key Laboratory of Aerospace Biodynamics at Fourth Military Medical University. The project was supported by NSFC Grant 30973808.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Wang or Zongren Wang.

Additional information

N. Wang, H. Wang and J. Chen are the co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 16991 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, N., Wang, H., Chen, J. et al. The simulated microgravity enhances multipotential differentiation capacity of bone marrow mesenchymal stem cells. Cytotechnology 66, 119–131 (2014). https://doi.org/10.1007/s10616-013-9544-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-013-9544-8

Keywords

Navigation