, Volume 65, Issue 5, pp 829–838 | Cite as

Kinetic studies of recombinant rabies virus glycoprotein (RVGP) cDNA transcription and mRNA translation in Drosophila melanogaster S2 cell populations

  • R. M. AstrayEmail author
  • S. A. C. Jorge
  • M. A. N. Lemos
  • A. Y. Yokomizo
  • V. L. L. Boldorini
  • A. L. P. Puglia
  • O. G. Ribeiro
  • C. A. PereiraEmail author
Original Research


Recombinant rabies virus glycoprotein (RVGP) was expressed in cell membranes of stably transfected Drosophila S2 cells using constitutive and inducible promoters. Although with quantitative differences of RVGP expression in both systems, the cDNA transcription, as evaluated by relative RVGP mRNA levels measured by qRT-PCR, sustained the amount of RVGP producing cells and the RVGP volumetric (ΠRVGP) productivity. At the transition to the stationary cell growth phase, once the cell culture slowed down its rate of multiplication, an accumulation of RVGP mRNA and RVGP was clearly observed in both cell populations. Nevertheless, cell cultures performed under sub-optimal temperatures indicated that an envisaged increase in the RVGP production is not only dependent on cell growth rate, but essentially on optimal cell metabolic state.


S2 cells Rabies virus glycoprotein qRT-PCR mRNA Cell culture 



Rabies virus glycoprotein


Quantitative reverse transcriptase-polimerase chain reaction


Cell concentration (cell/mL)


Rabies virus glycoprotein cell content (μg/107 cells)


Specific cell growth rate (h−1)


Volumetric productivity (ng mL−1 h−1)



We thank Dr. Jorge Mário da Costa Ferreira Jr., Laboratório de Imunoquímica, Instituto Butantan, São Paulo, SP, Brazil, for flow cytometry analysis. This work was financially supported by grants from FAPESP (2011/08331-0), CNPq and Butantan Foundation. C. A. Pereira is recipient of a CNPq 1A senior fellowship.


  1. Astray RM, Augusto E, Yokomizo AY, Pereira CA (2008) Analytical approach for the extraction of recombinant membrane viral glycoprotein from stably transfected Drosophila melanogaster cells. Biotechnol J 3:98–103Google Scholar
  2. Augusto EF, Moraes AM, Piccoli RA, Barral MF, Suazo CA, Tonso A, Pereira CA (2010) Nomenclature and guideline to express the amount of a membrane protein synthesized in animal cells in view of bioprocess optimization and production monitoring. Biologicals 38:105–113Google Scholar
  3. Batista FR, Pereira CA, Mendonça RZ, Moraes AM (2008) Formulation of a protein-free medium based on IPL-41 for the sustained growth of Drosophila melanogaster S2 cells. Cytotechnology 57:11–22Google Scholar
  4. Batista FR, Moraes AM, Büntemeyer H, Noll T (2009) Influence of culture conditions on recombinant Drosophila melanogaster S2 cells producing rabies virus glycoprotein cultivated in serum-free medium. Biologicals 37:108–118Google Scholar
  5. Batista FR, Greco KN, Astray RM, Jorge SA, Augusto EF, Pereira CA, Mendonça RZ, Moraes AM (2011) Behavior of wild-type and transfected S2 cells cultured in two different media. Appl Biochem Biotechnol 163:1–13Google Scholar
  6. Brillet K, da Conceição MM, Pattus F, Pereira CA (2006) Bioprocess parameters of cell growth and human mu opioid receptor expression in recombinant Drosophila S2 cell cultures in a bioreactor. Bioprocess Biosyst Eng 28:291–293Google Scholar
  7. Butler M (2004) Animal cell culture and technology, 2nd edn. Taylor & Francis, New YorkCrossRefGoogle Scholar
  8. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159CrossRefGoogle Scholar
  9. Chung YT, Keller EB (1990a) Positive and negative regulatory elements mediating transcription from the Drosophila melanogaster actin 5C distal promoter. Mol Cell Biol 10:6172–6180Google Scholar
  10. Chung YT, Keller EB (1990b) Regulatory elements mediating transcription from the Drosophila melanogaster actin 5C proximal promoter. Mol Cell Biol 10:206–216Google Scholar
  11. Dietzschold B (1977) Oligosaccharides of the glycoprotein of rabies virus. J Virol 23:286–293Google Scholar
  12. Dinnis DM, James DC (2005) Engineering mammalian cell factories for improved recombinant monoclonal antibody production: lessons from nature? Biotechnol Bioeng 91:180–189CrossRefGoogle Scholar
  13. Doyle A, Griffths JB (1998) Cell and tissue culture laboratory procedures in biotechnology. Wiley, New YorkGoogle Scholar
  14. Fujii-Taira I, Yamaguchi S, Iijima R, Natori S, Homma KJ (2009) Suppression of the ecdysteroid-triggered growth arrest by a novel Drosophila membrane steroid binding protein. FEBS Lett 583:655–660Google Scholar
  15. Galesi ALL, Pereira CA, Moraes AM (2007) Culture of transgenic Drosophila melanogaster Schneider 2 cells in serum-free media based on TC100 basal medium. Biotechnol J 2:1399–1407CrossRefGoogle Scholar
  16. Galesi AL, Aguiar MA, Astray RM, Augusto EF, Moraes AM et al (2008) Growth of recombinant Drosophila melanogaster Schneider 2 cells producing rabies virus glycoprotein in bioreactor employing serum-free medium. Cytotechnology 57:73–81Google Scholar
  17. Gaudin Y (1997) Folding of rabies virus glycoprotein: epitope acquisition and interaction with endoplasmic reticulum chaperones. J Virol 71:3742–3750Google Scholar
  18. Gaudin Y, Ruigrok RWH, Tuffereau C (1992) Rabies virus glycoprotein is a trimer. Virology 187:627–632CrossRefGoogle Scholar
  19. Jennings NS, Smethurst PA, Knight CG, O’Connor MN, Joutsi-Korhonen L, Stafford P, Stephens J, Garner SF, Harmer IJ, Farndale RW, Watkins NA, Ouwehand WH (2006) Production of calmodulin-tagged proteins in Drosophila Schneider S2 cells: a novel system for antigen production and phage antibody isolation. J Immunol Methods 316:75–83Google Scholar
  20. Johansson DX, Drakenberg K, Hopmann KH, Schmidt A, Yari F, Hinkula J, Persson MA (2007) Efficient expression of recombinant human monoclonal antibodies in Drosophila S2 cells. J Immunol Methods 318:37–46Google Scholar
  21. Jorge SA, Hera C, Spina AM, Moreira RC, Pinho JR, Menck CF (1996) Expression of the hepatitis B virus surface antigen in mammalian cells using an Epstein–Barr-virus-derived vector. App Microbiol Biotechnol 46:533–537Google Scholar
  22. Kim YK, Shin HS, Tomiya N, Lee YC, Betenbaugh MJ, Cha HJ (2005) Production and N-glycan analysis of secreted human erythropoietin glycoprotein in stably transfected Drosophila S2 cells. Biotechnol Bioeng 20:452–461Google Scholar
  23. Lee JM, Jeon HB, Sohn BH, Chung IS (2007) Functional expression of recombinant canstatin in stably transformed Drosophila melanogaster S2 cells. Protein Expr Purif 52:258–264Google Scholar
  24. Lemos MA, Santos AS, Astray RM, Pereira CA, Jorge SA (2009) Rabies virus glycoprotein expression in Drosophila S2 cells. I. Design of expression/selection vectors, subpopulations selection and influence of sodium butyrate and culture medium on protein expression. J Biotechnol 143:103–110Google Scholar
  25. Li HC, Huang CC, Chen SF, Chou MY (2005) Assembly of homotrimeric type XXI minicollagen by coexpression of prolyl 4-hydroxylase in stably transfected Drosophila melanogaster S2 cells. Biochem Biophys Res Commun 336:375–385Google Scholar
  26. Lim HJ, Kim YK, Hwang DS, Cha HJ (2004) Expression of functional human transferrin in stably transfected Drosophila S2 cells. Biotechnol Prog 20:1192–1197Google Scholar
  27. Mallender WD, Yager D, Onstead L, Nichols MR, Eckman C, Sambamurti K, Kopcho LM, Marcinkeviciene J, Copeland RA, Rosenberry TL (2001) Characterization of recombinant, soluble beta-secretase from an insect cell expression system. Mol Pharmacol 59:619–626Google Scholar
  28. McCarrol L, King LA (1997) Stable insect cell cultures for recombinant protein production. Curr Opin Biotechnol 8:590–594CrossRefGoogle Scholar
  29. Mendonça RZ, Greco KN, Sousa AP, Moraes RH, Astray RM, Pereira CA (2008) Enhancing effect of a protein from Lonomia obliqua hemolymph on recombinant protein production. Cytotechnology 57:83–91Google Scholar
  30. Mendonça RZ, Greco KN, Moraes RH, Astray RM, Barral M (2009) Study of kinetic parameters for the production of recombinant rabies virus glycoprotein. Cytotechnology 60:143–151Google Scholar
  31. Moraes AM, Jorge SA, Astray RM, Suazo CA, Calderón Riquelme CE, Augusto EF, Tonso A, Pamboukian MM, Piccoli RA, Barral MF, Pereira CA (2012) Drosophila melanogaster S2 cells for expression of heterologous genes: from gene cloning to bioprocess development. Biotechnol Adv 30:613–628Google Scholar
  32. Nie L, Wu G, Zhang W (2006) Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify sources of variations. Biochem Biophys Res Commun 339:603–610CrossRefGoogle Scholar
  33. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 3:1559–1582CrossRefGoogle Scholar
  34. Palomares LA, Estrada-Moncada S, Ramírez OT (2004) Production of recombinant proteins: challenges and solutions. In: Balbás P, Lorence A (eds) Recombinant gene expression: reviews and protocols. Humana Press, Totowa, pp 15–52CrossRefGoogle Scholar
  35. Perrin P, Thibodeau L, Sureau P (1985) Rabies immunosome (subunit vaccine) structure and immunogenicity. Pre- and post-exposure protection studies. Vaccine 3:325–332CrossRefGoogle Scholar
  36. Perrin P, Lafon M, Sureau P (1996) Enzyme linked immuno-sorbent assay (ELISA) for the determination of glycoprotein content of rabies vaccines. In: Meslin FX, Kaplan MM, Koprowski H (eds) Laboratory techniques in rabies. WHO, Geneva, pp 383–388Google Scholar
  37. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007CrossRefGoogle Scholar
  38. Scotter AJ, Kuntz DA, Saul M, Graham LA, Davies PL, Rose DR (2006) Expression and purification of sea raven type II antifreeze protein from Drosophila melanogaster S2 cells. Protein Expr Purif 47:374–383Google Scholar
  39. Southon A, Burke R, Norgate M, Batterham P, Camakaris J (2004) Copper homoeostasis in Drosophila melanogaster S2 cells. Biochem J 383:303–309Google Scholar
  40. Swiech K, Rossi N, Astray RM, Suazo CA (2008a) Enhanced production of recombinant rabies virus glycoprotein (rRVGP) by Drosophila melanogaster S2 cells through control of culture conditions. Cytotechnology 57:67–72Google Scholar
  41. Swiech K, Rossi N, Silva BG, Jorge SA, Astray RM, Suazo CA (2008b) Bioreactor culture of recombinant Drosophila melanogaster S2 cells: characterization of metabolic features related to cell growth and production of the rabies virus glycoprotein. Cytotechnology 57:61–66Google Scholar
  42. Swiech K, da Silva CS, Arantes MK, dos Santos AS, Astray RM, Pereira CA, Suazo CA (2008c) Characterization of growth and metabolism of Drosophila melanogaster cells transfected with the rabies virus glycoprotein gene. Biotechnol Appl Biochem 49:41–49Google Scholar
  43. Ventini DC, Astray RM, Lemos MA, Jorge SA, Riquelme CC, Suazo CA, Tonso A, Pereira CA (2010) Recombinant rabies virus glycoprotein synthesis in bioreactor by transfected Drosophila melanogaster S2 cells carrying a constitutive or an inducible promoter. J Biotechnol 146:169–172Google Scholar
  44. Wagner RR (1991) Rhabdoviridae and their replication. In: Fields BN, Knipe DM (eds) Fundamental virology. Raven Press, New York, pp 493–496Google Scholar
  45. Washburn MP, Koller A, Oshiro G (2003) Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc Nat Acad Sci USA 100:3107–3112CrossRefGoogle Scholar
  46. World Health Organization (2007) Weekly epidemiological report, vol 82. World Health Organization, Geneva, pp 425–436Google Scholar
  47. Yokomizo AY, Jorge SA, Astray RM, Fernandes I, Ribeiro OG, Horton DS, Tonso A, Tordo N, Pereira CA (2007) Rabies virus glycoprotein expression in Drosophila S2 cells. I. Functional recombinant protein in stable co-transfected cell line. Biotechnol J 2:102–109Google Scholar
  48. Yoon SK, Hong JK, Choo SH, Song JY, Park HW, Lee GM (2006) Adaptation of Chinese hamster ovary cells to low culture temperature: cell growth and recombinant protein production. J Biotechnol 122:463–472Google Scholar
  49. Zhang F, Ma W, Zhang L, Aasa-Chapman M, Zhang H (2007) Expression of particulate-form of Japanese encephalitis virus envelope protein in a stably transfected Drosophila cell line. Virol J 4:17Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • R. M. Astray
    • 1
    Email author
  • S. A. C. Jorge
    • 1
  • M. A. N. Lemos
    • 1
  • A. Y. Yokomizo
    • 1
    • 2
  • V. L. L. Boldorini
    • 1
  • A. L. P. Puglia
    • 1
  • O. G. Ribeiro
    • 3
  • C. A. Pereira
    • 1
    Email author
  1. 1.Laboratório de Imunologia ViralInstituto ButantanSão PauloBrazil
  2. 2.Cristália Produtos Químicos e Farmacêuticos LtdaItapiraBrazil
  3. 3.Laboratório de ImunogenéticaInstituto ButantanSão PauloBrazil

Personalised recommendations