Skip to main content
Log in

Combination of yeast hydrolysates to improve CHO cell growth and IgG production

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Many studies underlined the great benefits of hydrolysates used as additives in animal free media on cell culture performances. However, to precisely define hydrolysate supplementation strategies, a deeper understanding of their effect on cell growth and protein production is required. In the present study, the effect of addition of one yeast extract (YE) and two yeast peptones (named YP.A and YP.B) in a chemically defined medium was first assessed on cell culture performances. Interestingly, specific effects were found depending on the degree of degradation of yeast hydrolysates. The YE at 1 g L−1 increased the maximal cell density by 70 %, while a mixture of YE (1 g L−1) and YP.A (4 g L−1) increased IgG production by 180 %. These conditions were then evaluated on the CHO cell kinetics all over cultures. Hydrolysates extended the cell growth phase in Erlenmeyer flask and increased the maximal growth rate in bioreactor up to 20 %. Cell growth stimulation induced by hydrolysates addition was linked with energetic metabolism improvement suggesting that they promote oxidative pathway. Furthermore, hydrolysates provided an additional source of substrate that supported cell growth despite glutamine limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn WS, Antoniewicz MR (2011) Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab Eng 13:598–609

    Article  CAS  Google Scholar 

  • Ballez JS, Mols J, Burteau C, Agathos SN, Schneider YJ (2004) Plant protein hydrolysates support CHO-320 cells proliferation and recombinant IFN-γ production in suspension and inside microcarriers in protein-free media. Cytotechnology 44:103–114

    Article  CAS  Google Scholar 

  • Bonarius HP, Hatzimanikatis V, Meeseters KP, de Gooijer CD, Schmid G, Tramper J (1996) Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechnol Bioeng 50:299–318

    Article  CAS  Google Scholar 

  • Burky JE, Wesson MC, Young A, Farnsworth S, Dionne B, Zhu Y, Hartman TE, Qu L, Zhou W, Sauer PW (2007) Protein-free fed-batch culture of non-GS NS0 cell lines for production of recombinant antibodies. Biotechnol Bioeng 96:281–293

    Article  CAS  Google Scholar 

  • Burteau CC, Verhoeye FR, Mols JF, Ballez JS, Agathos SN, Schneider YJ (2003) Fortification of a protein-free cell culture medium with plant peptones improves cultivation and productivity of an interferon-γ-producing CHO cell line. In Vitro Cell Dev Biol Anim 39:291–296

    Article  CAS  Google Scholar 

  • Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291

    Article  CAS  Google Scholar 

  • Christie A, Butler M (1994) Glutamine-based dipeptides are utilized in mammalian cell culture by extracellular hydrolysis catalyzed by a specific peptidase. J Biotechnol 37:277–290

    Article  CAS  Google Scholar 

  • Chua FK, Yap MG, Oh SK (1994) Hyper-stimulation of monoclonal antibody production by high osmolarity stress in eRDF medium. J Biotechnol 37:265–275

    Article  CAS  Google Scholar 

  • Chun BH, Kim JH, Lee HJ, Chung N (2007) Usability of size-excluded fractions of soy protein hydrolysates for growth and viability of Chinese hamster ovary cells in protein-free suspension culture. Bioresour Technol 98:1000–1005

    Article  CAS  Google Scholar 

  • Daniel H, Morse EL, Adibi SA (1992) Determinants of substrate affinity for the oligopeptide/H+ symporter in the renal brush border membrane. J Biol Chem 267:9565–9573

    CAS  Google Scholar 

  • Farges B, Chenu S, Marc A, Goergen JL (2008) Kinetics of IFN-γ producing CHO cells and other industrially relevant cell lines in rapeseed-supplemented batch cultures. Process Biochem 43:945–953

    Article  CAS  Google Scholar 

  • Farges-Haddani B, Tessier B, Chenu S, Chevalot I, Harscoat C, Marc I, Goergen JL, Marc A (2006) Peptide fractions of rapeseed hydrolysates as an alternative to animal proteins in CHO cell culture media. Process Biochem 41:2297–2304

    Article  CAS  Google Scholar 

  • Franek F (2004) Gluten of spelt wheat (Triticum aestivum subspecies spelta) as a source of peptides promoting viability and product yield of mouse hybridoma cell cultures. J Agric Food Chem 52:4097–4100

    Article  CAS  Google Scholar 

  • Franek F, Katinger H (2002) Specific Effects of Synthetic Oligopeptides on Cultured Animal Cells. Biotechnol Prog 18:155–158

    Article  CAS  Google Scholar 

  • Froud SJ (1999) The development, benefits and disadvantages of serum-free media. Dev Biol Stand 99:157–166

    CAS  Google Scholar 

  • Goergen JL, Marc A, Engasser JM (1993) Determination of cell lysis and death kinetics in continuous hybridoma cultures from the measurement of lactate dehydrogenase release. Cytotechnology 11:189–195

    Article  CAS  Google Scholar 

  • Grillberger L, Kreil TR, Nasr S, Reiter M (2009) Emerging trends in plasma-free manufacturing of recombinant protein therapeutics expressed in mammalian cells. Biotechnol J 4:186–201

    Article  CAS  Google Scholar 

  • Hansen HA, Emborg C (1994) Influence of ammonium on growth, metabolism, and productivity of a continuous suspension Chinese hamster ovary cell culture. Biotechnol Prog 10:121–124

    Article  CAS  Google Scholar 

  • Hansen K, Kjalke M, Rasmussen PB, Kongerslev L, Ezban M (1997) Proteolytic cleavage of recombinant two-chain factor VIII during cell culture production is mediated by protease(s) from lysed cells: the use of pulse labelling directly in production medium. Cytotechnology 24:227–234

    Article  CAS  Google Scholar 

  • Heidemann R, Zhang C, Qi H, Larrick Rule J, Rozales C, Park S, Chuppa S, Ray M, Michaels J, Konstantinov K, Naveh D (2000) The use of peptones as medium additives for the production of a recombinant therapeutic protein in high density perfusion cultures of mammalian cells. Cytotechnology 32:157–167

    Article  CAS  Google Scholar 

  • Ju HK, Hwang SJ, Jeon CJ, Lee GM, Yoon SK (2009) Use of NaCl prevents aggregation of recombinant COMP-Angiopoietin-1 in Chinese hamster ovary cells. J Biotechnol 143:145–150

    Article  CAS  Google Scholar 

  • Kim SH, Lee GM (2009) Development of serum-free medium supplemented with hydrolysates for the production of therapeutic antibodies in CHO cell cultures using design of experiments. Appl Microbiol Biotechnol 83:639–648

    Article  CAS  Google Scholar 

  • Kuwae S, Ohda T, Tamashima H, Miki H, Kobayashi K (2005) Development of a fed-batch culture process for enhanced production of recombinant human antithrombin by Chinese hamster ovary cells. J Biosci Bioeng 100:502–510

    Article  CAS  Google Scholar 

  • Lao MS, Toth D (1997) Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture. Biotechnol Prog 13:688–691

    Article  CAS  Google Scholar 

  • Luo J, Vijayasankaran N, Autsen J, Santuray R, Hudson T, Amanullah A, Li F (2012) Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Biotechnol Bioeng 109:146–156

    Article  CAS  Google Scholar 

  • Michiels JF, Sart S, Schneider YJ, Agathos SN (2011) Effects of a soy peptone on γ-IFN production steps in CHO-320 cells. Process Biochem 46:1759–1766

    Article  CAS  Google Scholar 

  • Miescher S, Zahn-Zabal M, De Jesus M, Moudry R, Fisch I, Vogel M, Kobr M, Imboden MA, Kragten E, Bichler J, Mermod N, Stadler BM, Amstutz H, Wurm F (2000) CHO expression of a novel human recombinant IgG1 anti-RhD antibody isolated by phage display. Br J Haematol 111:157–166

    Article  CAS  Google Scholar 

  • Mosser M, Kapel R, Aymes A, Bonnano LM, Olmos E, Chevalot I, Marc I, Marc A (2012) Chromatographic fractionation of yeast extract: a strategy to identify physicochemical properties of compounds promoting CHO cell culture. Process Biochem 47:1178–1185

    Article  CAS  Google Scholar 

  • Nielsen LK, Smyth GK, Greenfield PF (1991) Haemocytometer cell count distributions: implications of non-poisson behaviour. Biotechnol Prog 7:560–563

    Article  Google Scholar 

  • Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DI (1999) Metabolism of peptide amino acids by Chinese hamster ovary cells grown in a complex medium. Biotechnol Bioeng 62:324–335

    Article  CAS  Google Scholar 

  • Petiot E, Guedon E, Blanchard F, Gény C, Pinton H, Marc A (2010) Kinetic characterization of vero cell metabolism in a serum-free batch culture process. Biotechnol Bioeng 107:143–153

    Article  CAS  Google Scholar 

  • Schlaeger EJ (1996) The protein hydrolysate, Primatone RL, is a cost-effective multiple growth promoter of mammalian cell culture in serum-containing and serum-free media and displays anti-apoptosis properties. J Immunol Methods 194:191–199

    Article  CAS  Google Scholar 

  • Schneider YJ (1989) Optimisation of hybridoma cell growth and monoclonal antibody secretion in a chemically defined, serum- and protein-free culture medium. J Immunol Methods 116:65–77

    Article  CAS  Google Scholar 

  • Sung YH, Lim SW, Chung JY, Lee GM (2004) Yeast hydrolysate as a low-cost additive to serum-free medium for the production of human thrombopoietin in suspension cultures of Chinese hamster ovary cells. Appl Microbiol Biotechnol 63:527–536

    Article  CAS  Google Scholar 

  • Wilkens CA, Altamirano C, Gerdtzen ZP (2011) Comparative metabolic analysis of lactate for CHO cells in glucose and galactose. Biotechnol Bioprocess Eng 16:714–724

    Article  CAS  Google Scholar 

  • Yoon SK, Choi SL, Song JY, Lee GM (2005) Effect of culture pH on erythropoietin production by Chinese hamster ovary cells grown in suspension at 32.5 and 37.0 degrees C. Biotechnol Bioeng 89:345–356

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Florian Wurm (EPFL, Lausanne) for the supply of the recombinant CHO cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Chevalot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosser, M., Chevalot, I., Olmos, E. et al. Combination of yeast hydrolysates to improve CHO cell growth and IgG production. Cytotechnology 65, 629–641 (2013). https://doi.org/10.1007/s10616-012-9519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-012-9519-1

Keywords

Navigation