Skip to main content

Advertisement

Log in

Cancer stem cell hypothesis: a brief summary and two proposals

  • Review Paper
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The investigation and development of the cancer stem cell (CSC) model has received much focus during these years. CSC is characterized as a small fraction of cancer cells that have an indefinite ability for self-renewal and pluripotency and are responsible for initiating and sustaining of the bulk of cancer. So, whether current treatment strategies, most of which target the rapid division of cancer cells, could interfere with the slow-cycling CSCs is broadly questioned. Meanwhile, however, the new understanding of tumorigenesis has led to the development of new drug screening strategies. Both stem cells and mesenchymal stem cells have been vigorously used in pre-clinical studies of their anti-tumor potential, mainly due to their inherent tumoritropic migratory properties and their ability to carry anti-tumor transgenes. Here, based on the tumorigenic and tumoritropic characteristics of CSCs, we proposed two hypotheses exploring possible usage of CSCs as novel anti-tumor agents and potential sources for tissue regeneration. Further experimental validation of these hypotheses may unravel some new research topics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ailles LE, Weissman IL (2007) Cancer stem cells in solid tumors. Curr Opin Biotechnol 18:460–466

    Article  CAS  Google Scholar 

  • Albarenque SM, Zwacka RM, Mohr A (2011) Both human and mouse mesenchymal stem cells promote breast cancer metastasis. Stem Cell Res 7:163–171

    Article  CAS  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumourigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  CAS  Google Scholar 

  • Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5:899–904

    Article  CAS  Google Scholar 

  • Bonnett D, Dick JE (1997) Human acute myeloid leukaemia is organized as a hierarchy that originates from a primate haematopoietic cell. Nat Med 3:730–737

    Article  Google Scholar 

  • Burness ML, Sipkins DA (2010) The stem cell niche in health and malignancy. Semin Cancer Biol 20:107–115

    Article  Google Scholar 

  • Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, Meng S, Chen Y, Zhou R, Song X, Guo Y, Ding M, Deng H (2007) Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45:1229–1239

    Article  CAS  Google Scholar 

  • Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, Brooks M, Reinhardt F, Su Y, Polyak K, Arendt LM, Kuperwasser C, Bierie B, Weinberg RA (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci USA 108:7950–7955

    Article  CAS  Google Scholar 

  • Cho RW, Clarke MF (2008) Recent advances in cancer stem cells. Curr Opin Genet Dev 18:48–53

    Article  CAS  Google Scholar 

  • Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells–perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  CAS  Google Scholar 

  • D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter M, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401

    Article  Google Scholar 

  • Dondossola E, Crippa L, Colombo B, Ferrero E, Corti A (2012) Chromogranin A regulates tumor self-seeding and dissemination. Cancer Res 72:449–459

    Article  CAS  Google Scholar 

  • Dong D, Dubeau L, Bading J, Nguyen K, Luna M, Yu H, Gazit-Bornstein G, Gordon EM, Gomer C, Hall FL, Gambhir SS, Lee AS (2004) Spontaneous and controllable activation of suicide gene expression driven by the stress-inducible grp78 promoter resulting in eradication of sizable human tumors. Hum Gene Ther 15:553–561

    Article  CAS  Google Scholar 

  • Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514

    Article  CAS  Google Scholar 

  • Gudas LJ, Wagner JA (2011) Retinoids regulate stem cell differentiation. J Cell Physiol 226:322–330

    Article  CAS  Google Scholar 

  • Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    Article  CAS  Google Scholar 

  • Hahnfeldt P (2010) Significance of tumor self-seeding as an augmentation to the classic metastasis paradigm. Future Oncol 6:681–685

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  • Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183

    Article  CAS  Google Scholar 

  • Hwang-Verslues WW, Kuo WH, Chang PH, Pan CC, Wang HH, Tsai ST, Jeng YM, Shew JY, Kung JT, Chen CH, Lee EY, Chang KJ, Lee WH (2009) Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS ONE 4:e8377

    Article  Google Scholar 

  • Jordan CT, Guzman ML, Noble M (2006) Cancer Stem Cells. N Engl J Med 355:1253–1261

    Article  CAS  Google Scholar 

  • Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  CAS  Google Scholar 

  • Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, Massagué J (2009) Tumor self-seeding by circulating cancer cells. Cell 139:1315–1326

    Article  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  CAS  Google Scholar 

  • Maenhaut C, Dumont JE, Roger PP, van Staveren WC (2010) Cancer stem cells: a reality, a myth, a fuzzy concept or a misnomer? An analysis. Carcinogenesis 31:149–158

    Article  CAS  Google Scholar 

  • Matthess Y, Kappel S, Spänkuch B, Zimmer B, Kaufmann M, Strebhardt K (2005) Conditional inhibition of cancer cell proliferation by tetracycline-responsive, H1 promoter-driven silencing of PLK1. Oncogene 24:2973–2980

    Article  CAS  Google Scholar 

  • Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC (2010) Regulatory T cells in cancer. Adv Cancer Res 107:57–117

    Article  CAS  Google Scholar 

  • Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    Article  CAS  Google Scholar 

  • Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598

    Article  CAS  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  CAS  Google Scholar 

  • Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science 324:1670–1673

    Article  CAS  Google Scholar 

  • Schatton T, Frank MH (2009) Antitumor immunity and cancer stem cells. Ann N Y Acad Sci 1176:154–169

    Article  CAS  Google Scholar 

  • Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51:1–28

    Article  Google Scholar 

  • Shackleton M (2010) Normal stem cells and cancer stem cells: similar and different. Semin Cancer Biol 20:85–92

    Article  CAS  Google Scholar 

  • Shah K (2012) Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev 64:739–748

    Google Scholar 

  • Shields JD, Kourtis IC, Tomei AA, Roberts JM, Swartz MA (2010) Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328:749–752

    Article  CAS  Google Scholar 

  • Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM, Pienta MJ, Song J, Wang J, Loberg RD, Krebsbach PH, Pienta KJ, Taichman RS (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121:1298–12312

    Article  CAS  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  Google Scholar 

  • Song Z, Cai J, Liu Y, Zhao D, Yong J, Duo S, Song X, Guo Y, Zhao Y, Qin H, Yin X, Wu C, Che J, Lu S, Ding M, Deng H (2009) Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res 19:1233–1242

    Article  Google Scholar 

  • Speer BS, Shoemaker NB, Salyers AA (1992) Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin Microbiol Rev 5:387–399

    CAS  Google Scholar 

  • Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM, Shroyer NF, Wells JM (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109

    Article  Google Scholar 

  • Strauss DC, Thomas JM (2010) Transmission of donor melanoma by organ transplantation. Lancet Oncol 11:790–796

    Article  Google Scholar 

  • Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y, Wang TC (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27:1006–1020

    Article  CAS  Google Scholar 

  • Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8:97–106

    Article  CAS  Google Scholar 

  • Tang XH, Gudas LJ (2011) Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol 6:345–364

    Article  CAS  Google Scholar 

  • Toloudi M, Apostolou P, Chatziioannou M, Papasotiriou I (2011) Correlation between cancer stem cells and circulating tumor cells and their value. Case Rep Oncol 4:44–54

    Article  Google Scholar 

  • Tsai KS, Yang SH, Lei YP, Tsai CC, Chen HW, Hsu CY, Chen LL, Wang HW, Miller SA, Chiou SH, Hung MC, Hung SC (2011) Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology 141:1046–1056

    Article  CAS  Google Scholar 

  • Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  CAS  Google Scholar 

  • Voog J, Jones DL (2010) Cell stem cell—stem cells and the niche: a dynamic duo. Cell Stem Cell 6:103–115

    Article  CAS  Google Scholar 

  • Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Priebe W, Sawaya R, Lang FF, Heimberger AB (2010a) Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther 9:67–78

    Article  CAS  Google Scholar 

  • Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, Gumin J, Henry Hyperlink V, Colman H, Sawaya R, Lang FF, Heimberger AB (2010b) Glioma-associated cancer-initiating cells induce immunosuppression. Clin Cancer Res 16:461–473

    Article  CAS  Google Scholar 

  • Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, Sawaya R, Heimberger AB (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 12:1113–1125

    Article  CAS  Google Scholar 

  • Yang L, Pang Y, Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31:220–227

    Article  CAS  Google Scholar 

  • Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, Shi Y, Deng H (2009) Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 19:429–438

    Article  CAS  Google Scholar 

  • Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported partially by “National Natural Science Foundation of China” (No.31272100 and No.30901774), the “National High Technology Research and Development Program of China (863 Program)” (No.2012AA020809), the Innovative Research Program for Graduates of Shanxi Province (20113018) and the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi.

Conflict of interest

The authors state that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejun Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, S., Xin, L., Liang, A. et al. Cancer stem cell hypothesis: a brief summary and two proposals. Cytotechnology 65, 505–512 (2013). https://doi.org/10.1007/s10616-012-9517-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-012-9517-3

Keywords

Navigation