Skip to main content

Advertisement

Log in

Harvest site influences the growth properties of adipose derived stem cells

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The therapeutic potential of adult stem cells may become a relevant option in clinical care in the future. In hand and plastic surgery, cell therapy might be used to enhance nerve regeneration and help surgeons and clinicians to repair debilitating nerve injuries. Adipose-derived stem cells (ASCs) are found in abundant quantities and can be harvested with a low morbidity. In order to define the optimal fat harvest location and detect any potential differences in ASC proliferation properties, we compared biopsies from different anatomical sites (inguinal, flank, pericardiac, omentum, neck) in Sprague–Dawley rats. ASCs were expanded from each biopsy and a proliferation assay using different mitogenic factors, basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) was performed. Our results show that when compared with the pericardiac region, cells isolated from the inguinal, flank, omental and neck regions grow significantly better in growth medium alone. bFGF significantly enhanced the growth rate of ASCs isolated from all regions except the omentum. PDGF had minimal effect on ASC proliferation rate but increases the growth of ASCs from the neck region. Analysis of all the data suggests that ASCs from the neck region may be the ideal stem cell sources for tissue engineering approaches for the regeneration of nervous tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguena M, Fanganiello RD, Tissiani LA, Ishiy FA, Atique R, Alonso N, Passos-Bueno MR (2012) Optimization of parameters for a more efficient use of adipose-derived stem cells in regenerative medicine therapies. Stem Cells Int 2012:303610

    Google Scholar 

  • Bayes-Genis A, Galvez-Monton C, Prat-Vidal C, Soler-Botija C (2012) Cardiac adipose tissue: a new frontier for cardiac regeneration? Int J Cardiol. doi:10.1016/j.ijcard.2012.05.082

  • Buhring HJ, Battula VL, Treml S, Schewe B, Kanz L, Vogel W (2007) Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 1106:262–271

    Article  Google Scholar 

  • Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED (2006) Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 24:1054–1064

    Article  CAS  Google Scholar 

  • Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H (2001) Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci 14:1771–1776

    Article  CAS  Google Scholar 

  • Dhanasekaran M, Indumathi S, Kanmani A, Poojitha R, Revathy KM, Rajkumar JS, Sudarsanam D (2012) Surface antigenic profiling of stem cells from human omentum fat in comparison with subcutaneous fat and bone marrow. Cytotechnology 5:497–509

    Google Scholar 

  • di Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF (2010) Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg 63:1544–1552

    Article  Google Scholar 

  • Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, Krettek C, Van Griensven M (2005) Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng 11:41–49

    Article  CAS  Google Scholar 

  • Hauner H, Rohrig K, Petruschke T (1995) Effects of epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) on human adipocyte development and function. Eur J Clin Investig 25:90–96

    Article  CAS  Google Scholar 

  • Hausman GJ, Richardson RL (2004) Adipose tissue angiogenesis. J Animal Sci 82:925–934

    CAS  Google Scholar 

  • Helder MN, Knippenberg M, Klein-Nulend J, Wuisman PI (2007) Stem cells from adipose tissue allow challenging new concepts for regenerative medicine. Tissue Eng 13:1799–1808

    Article  CAS  Google Scholar 

  • Jiang L, Zhu JK, Liu XL, Xiang P, Hu J, Yu WH (2008) Differentiation of rat adipose tissue-derived stem cells into Schwann-like cells in vitro. NeuroReport 19:1015–1019

    Article  Google Scholar 

  • Kaewkhaw R, Scutt AM, Haycock JW (2011) Anatomical site influences the differentiation of adipose-derived stem cells for Schwann-cell phenotype and function. Glia 59:734–749

    Article  Google Scholar 

  • Kalbermatten DF, Schaakxs D, Kingham PJ, Wiberg M (2011) Neurotrophic activity of human adipose stem cells isolated from deep and superficial layers of abdominal fat. Cell Tissue Res 344:251–260

    Article  CAS  Google Scholar 

  • Kimura Y, Hokugo A, Takamoto T, Tabata Y, Kurosawa H (2008) Regeneration of anterior cruciate ligament by biodegradable scaffold combined with local controlled release of basic fibroblast growth factor and collagen wrapping. Tissue Eng Part C Methods 14:47–57

    Article  CAS  Google Scholar 

  • Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G (2007) Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 207:267–274

    Article  CAS  Google Scholar 

  • Kitamura M, Akamatsu M, Machigashira M, Hara Y, Sakagami R, Hirofuji T, Hamachi T, Maeda K, Yokota M, Kido J, Nagata T, Kurihara H, Takashiba S, Sibutani T, Fukuda M, Noguchi T, Yamazaki K, Yoshie H, Ioroi K, Arai T, Nakagawa T, Ito K, Oda S, Izumi Y, Ogata Y, Yamada S, Shimauchi H, Kunimatsu K, Kawanami M, Fujii T, Furuichi Y, Furuuchi T, Sasano T, Imai E, Omae M, Yamada S, Watanuki M, Murakami S (2011) FGF-2 stimulates periodontal regeneration: results of a multi-center randomized clinical trial. J Dent Res 90:35–40

    Article  CAS  Google Scholar 

  • Kohler N, Lipton A (1974) Platelets as a source of fibroblast growth-promoting activity. Exp Cell Res 87:297–301

    Article  CAS  Google Scholar 

  • Labouyrie E, Dubus P, Groppi A, Mahon FX, Ferrer J, Parrens M, Reiffers J, de Mascarel A, Merlio JP (1999) Expression of neurotrophins and their receptors in human bone marrow. Am J Pathol 154:405–415

    Article  CAS  Google Scholar 

  • Lattanzi W, Geloso MC, Saulnier N, Giannetti S, Puglisi MA, Corvino V, Gasbarrini A, Michetti F (2011) Neurotrophic features of human adipose tissue-derived stromal cells: in vitro and in vivo studies. J Biomed Biotechnol 2011:468705

    Article  Google Scholar 

  • Liang W, Xia H, Li J, Zhao RC (2011) Human adipose tissue derived mesenchymal stem cells are resistant to several chemotherapeutic agents. Cytotechnology 63:523–530

    Article  CAS  Google Scholar 

  • Lundborg G (2000) A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg Am 25:391–414

    Article  CAS  Google Scholar 

  • Lutton C, Young YW, Williams R, Meedeniya AC, Mackay-Sim A, Goss B (2012) Combined VEGF and PDGF treatment reduces secondary degeneration after spinal cord injury. J Neurotrauma 29:957–970

    Article  Google Scholar 

  • Martin I, Suetterlin R, Baschong W, Heberer M, Vunjak-Novakovic G, Freed LE (2001) Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation. J Cell Biochem 83:121–128

    Article  CAS  Google Scholar 

  • Meyer-Franke A, Wilkinson GA, Kruttgen A, Hu M, Munro E, Hanson MG Jr, Reichardt LF, Barres BA (1998) Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21:681–693

    Article  CAS  Google Scholar 

  • Mohamet L, Lea ML, Ward CM (2010) Abrogation of E-cadherin-mediated cellular aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake flask bioreactors. PLoS ONE 5:e12921

    Article  Google Scholar 

  • Mohammadi R, Azizi S, Amini K (2012) Effects of undifferentiated cultured omental adipose-derived stem cells on peripheral nerve regeneration. J Surg Res. doi:10.1016/j.jss.2012.04.011

  • Morgan L, Jessen KR, Mirsky R (1991) The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04+) to a myelin phenotype (P0+, GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition. J Cell Biol 112:457–467

    Article  CAS  Google Scholar 

  • Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, Helder MN, Klein-Nulend J, Schouten TE, Ritt MJ, van Milligen FJ (2006) Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 8:166–177

    Article  CAS  Google Scholar 

  • Padoin AV, Braga-Silva J, Martins P, Rezende K, Rezende AR, Grechi B, Gehlen D, Machado DC (2008) Sources of processed lipoaspirate cells: influence of donor site on cell concentration. Plast Reconstr Surg 122:614–618

    Article  CAS  Google Scholar 

  • Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 25:2896–2902

    Article  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  CAS  Google Scholar 

  • Ross R, Raines EW, Bowen-Pope DF (1986) The biology of platelet-derived growth factor. Cell 46:155–169

    Article  CAS  Google Scholar 

  • Sato N, Beitz JG, Kato J, Yamamoto M, Clark JW, Calabresi P, Raymond A, Frackelton AR Jr (1993) Platelet-derived growth factor indirectly stimulates angiogenesis in vitro. Am J Pathol 142:1119–1130

    CAS  Google Scholar 

  • Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, Fraser JK, Hedrick MH (2005) Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 54:132–141

    Article  CAS  Google Scholar 

  • Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J (2012) Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 21:2724–2752

    Google Scholar 

  • Tabata Y, Miyao M, Inamoto T, Ishii T, Hirano Y, Yamaoki Y, Ikada Y (2000) De novo formation of adipose tissue by controlled release of basic fibroblast growth factor. Tissue Eng 6:279–289

    Article  CAS  Google Scholar 

  • Taha MF, Hedayati V (2010) Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells. Tissue Cell 42:211–216

    Article  CAS  Google Scholar 

  • Tassi E, McDonnell K, Gibby KA, Tilan JU, Kim SE, Kodack DP, Schmidt MO, Sharif GM, Wilcox CS, Welch WJ, Gallicano GI, Johnson MD, Riegel AT, Wellstein A (2011) Impact of fibroblast growth factor-binding protein-1 expression on angiogenesis and wound healing. Am J Pathol 179:2220–2232

    Article  CAS  Google Scholar 

  • Wislet-Gendebien S, Leprince P, Moonen G, Rogister B (2003) Regulation of neural markers nestin and GFAP expression by cultivated bone marrow stromal cells. J Cell Sci 116:3295–3302

    Article  CAS  Google Scholar 

  • Witkowska-Zimny M, Walenko K (2011) Stem cells from adipose tissue. Cell Mol Biol Lett 16:236–257

    Article  Google Scholar 

  • Wu G, Song Y, Zheng X, Jiang Z (2011) Adipose-derived stromal cell transplantation for treatment of stress urinary incontinence. Tissue Cell 43:246–253

    Article  Google Scholar 

  • Yuan Q, Zeng X, Chen L, Peng E, Ye Z (2010) Comparison of myogenic differentiation ability of adipose-derived stem cells from different sites in rabbit. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 24:1228–1232

    Google Scholar 

  • Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, Jang JH, Shin US, Kim HW (2010) Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng 2010:218142

    Google Scholar 

  • Zhang Y, Wang F, Chen J, Ning Z, Yang L (2012) Bone marrow-derived mesenchymal stem cells versus bone marrow nucleated cells in the treatment of chondral defects. Int Orthop 36:1079–1086

    Article  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  Google Scholar 

Download references

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mathias Tremp or Daniel F. Kalbermatten.

Additional information

Patricia E. Engels and Mathias Tremp contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engels, P.E., Tremp, M., Kingham, P.J. et al. Harvest site influences the growth properties of adipose derived stem cells. Cytotechnology 65, 437–445 (2013). https://doi.org/10.1007/s10616-012-9498-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-012-9498-2

Keywords

Navigation