Skip to main content
Log in

Alkaline protease from a non-toxigenic mangrove isolate of Vibrio sp. V26 with potential application in animal cell culture

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Vibrio sp. V26 isolated from mangrove sediment showed 98 % similarity to 16S rRNA gene of Vibrio cholerae, V. mimicus, V. albensis and uncultured clones of Vibrio. Phenotypically also it resembled both V. cholerae and V. mimicus. Serogrouping, virulence associated gene profiling, hydrophobicity, and adherence pattern clearly pointed towards the non—toxigenic nature of Vibrio sp. V26. Purification and characterization of the enzyme revealed that it was moderately thermoactive, nonhemagglutinating alkaline metalloprotease with a molecular mass of 32 kDa. The application of alkaline protease from Vibrio sp. V26 (APV26) in sub culturing cell lines (HEp-2, HeLa and RTG-2) and dissociation of animal tissue (chick embryo) for primary cell culture were investigated. The time required for dissociation of cells as well as the viable cell yield obtained by while administering APV26 and trypsin were compared. Investigations revealed that the alkaline protease of Vibrio sp. V26 has the potential to be used in animal cell culture for subculturing cell lines and dissociation of animal tissue for the development of primary cell cultures, which has not been reported earlier among metalloproteases of Vibrios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almas S, Hameed A, Shelly D, Mohan P (2009) Purification and characterization of a novel protease from Bacillus strain SAL1. Afr J Biotechnol 8:3603–3609

    CAS  Google Scholar 

  • Alsina M, Blanch AR (1994) Improvement and update of a set of keys for biochemical identification of Vibrio species. J Appl Bacteriol 77:719–721

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  • Bag PK, Bhowmik P, Hajra TK, Ramamurthy T, Sarkar P, Majumder M, Chowdhury G, Das SC (2008) Putative virulence traits and pathogenicity of Vibrio cholerae non-O1, non-O139 isolates from surface waters in Kolkata, India. Appl Environ Microbiol 74:5635–5644

    Article  CAS  Google Scholar 

  • Bajpai R, Lesperance J, Kim M, Terskikh AV (2008) Efficient propagation of single cells accutase-dissociated human embryonic stem cells. Mol Reprod Dev 75:818–827

    Article  CAS  Google Scholar 

  • Benitez J, Silva A, Finkelstein R (2001) Environmental signals controlling production of hemagglutinin/protease in Vibrio cholera. Infect Immun 69:6549–6553

    Article  CAS  Google Scholar 

  • Chiplonkar JM, Gangodkar SV, Wagh UV, Ghadge GD, Rele MV, Srinivasan MC (1985) Applications of alkaline protease from Conidiobolus in animal cell culture. Biotechnol Lett 7:665–668

    Article  CAS  Google Scholar 

  • Chowdhury MAR, Miyoshi S-I, Shinoda S (1990) Purification and characterization of a protease produced by Vibrio mimicus. Infect Immun 58:4159–4162

    CAS  Google Scholar 

  • Davis BR, Fanning GR, Madden JM, Steigerwalt AG, Bradford HB Jr, Smith HL Jr, Brenner DJ (1981) Characterization of biochemically atypical Vibrio cholerae strains and designation of a new pathogenic species, Vibrio mimicus. J Clin Microbiol 14:631–639

    CAS  Google Scholar 

  • Drita VJ (1992) Coordinate control of virulence gene expression by Tox R in Vibrio cholerae. Mol Microbiol 6:451–458

    Article  Google Scholar 

  • Farmer III JJ, Janda JM (2005) Family 1 Vibrionaceae. In: Brenner DJ, Kreig NR, Stanley JT (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer Science + Bussiness Media Inc., NY

    Google Scholar 

  • Fields PI, Popovic T, Wachsmuth K, Olsvik O (1992) Use of polymerase chain reaction for detection of toxigenic Vibrio cholerae O1 strains from the Latin American cholera epidemic. J Clin Microbiol 30:2118–2121

    CAS  Google Scholar 

  • Finkelstein R, Hanne L (1982) Purification and characterization of the soluble hemagglutinin (cholera lectin) produced by Vibrio cholerae. Infect Immun 36:1199–1208

    CAS  Google Scholar 

  • Foley JF, Aftonomos B (1970) The use of pronase in tissue culture: a comparison with trypsin. J Cell Physiol 75:159–161

    Article  CAS  Google Scholar 

  • Freshney RI (2000) Culture of animal cells: a manual of basic techniques. Wiley-Liss, NY

    Google Scholar 

  • Ghosh C, Nandy RK, Dasgupta SK, Nair GB, Hall RH, Ghose AC (1997) A search for cholera toxin (CT), toxin coregulated pilus (TCP), the regulatory element ToxR, and other virulence factors in non-O1/non-O139 Vibrio cholerae. Microb Pathog 22:199–208

    Article  CAS  Google Scholar 

  • Hartree EE (1972) Determination of protein; a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427

    Article  CAS  Google Scholar 

  • Hilfer SR (1973) Tissue culture: methods and applications. Academic Press, New York

    Google Scholar 

  • Ichinose Y, Ehara M, Utsunomiya A (1992) Purification of protease from Vibrio cholerae O1 and its partial characterization. Trop Med 34:121–125

    Google Scholar 

  • Ishihara M, Kawanishi A, Watanabe H, Tomochika KI, Miyoshi SI, Shinoda S (2002) Purification of a serine protease of Vibrio parahaemolyticus and its characterization. Microbiol Immunol 46:299–303

    CAS  Google Scholar 

  • Iyer L, Vadivelu J, Puthucheary SD (2000) Detection of virulence associated genes, haemolysin and protease amongst Vibrio cholerae isolated in Malaysia. Epidemiol Infect 125:27–34

    Article  CAS  Google Scholar 

  • Jellouli K, Bougatef A, Manni L, Agrebi R, Siala R, Younes I, Nasri M (2009) Molecular and biochemical characterization of an extracellular serine-protease from Vibrio metschnikovii J1. J Ind Microbiol Biotechnol 36:939–948

    Article  CAS  Google Scholar 

  • Johnvesly B, Naik GR (2001) Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium. Process Biochem 37:139–144

    Google Scholar 

  • Kaper JB, Morris JG Jr, Levine MM (1995) Cholera. Clin Microbiol Rev 8:48–86

    CAS  Google Scholar 

  • Karbalaei-Heidari HR, Ziaee A–A, Schaller J, Amoozegar MA (2007) Purification and characterization of an extracellular haloalkaline protease produced by the moderately halophilic bacterium, Salinivibrio sp. strain AF-2004. Enzyme Microb Technol 40:266–272

    Article  CAS  Google Scholar 

  • Karunasagar I, Rivera I, Joseph B, Kennedy B, Shetty VR, Huq A, Karunasagar I, Colwel RR (2003) ompU genes in non-toxigenic Vibrio cholerae associated with aquaculture. J Appl Microbiol 95:338–343

    Article  CAS  Google Scholar 

  • Kembhavi AA, Kulharni A, Pant AA (1993) Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No 64. Appl Biochem Biotechnol 38:83–92

    Article  CAS  Google Scholar 

  • Kitano Y, Okada N (1983) Separation of the epidermal sheet by dispase. Br J Dermatol 108:555–600

    Article  CAS  Google Scholar 

  • Kita-Tsukamoto K, Oyaizu H, Nanba K, Simidu U (1993) Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae, determined on the basis of 16S rRNA sequences. Int J Syst Bacteriol 43:8–19

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  • Larsen KS, Auld DS (1991) Characterization of an inhibitory metal binding site in carboxypeptidase A. Biochem 30:2610–2613

    Google Scholar 

  • Lee LEJ, Pochmursky V, Bols NC (1986) Effect of corticosteroids on the morphology and proliferation of two Salmonid cell lines. Gen Comp Endocrin 64:373–380

    Article  CAS  Google Scholar 

  • Lee K, Yu S, Liu P (1997) Alkaline serine protease is an exotoxin of Vibrio alginolyticus in kuruma prawn, Penaeus japonicus. Curr Microbiol 34:110–117

    Article  Google Scholar 

  • Lee C-Y, Cheng M-F, Yu M-S, Pan M-J (2002) Purification and characterization of a putative virulence factor, serine protease, from Vibrio parahaemolyticus. FEMS Microbiol Letts 209:31–37

    Article  CAS  Google Scholar 

  • Lee YK, Kim HW, Liu CL, Lee HK (2003a) A simple method for DNA extraction from marine bacteria that produce extracellular materials. J Microbiol Meth 52:245–250

    Article  CAS  Google Scholar 

  • Lee J-H, Ahn SH, Lee E-M, Kim Y-O, Lee S-J, Kong I-S (2003b) Characterization of the enzyme acitivity of an extracellular metalloprotease (VMC) from Vibrio mimicus and its C-terminal deletions. FEMS Microbiol Lett 223:293–300

    Article  CAS  Google Scholar 

  • Levin BR, Tauxe RV (1996) Cholera: nice bacteria and bad viruses. Curr Biol 6:1389–1391

    Article  CAS  Google Scholar 

  • Levine MM, Black RE, Clements ML, Cisneros L, Saah A, Nalin DR, Gill DM, Craig JP, Young CR, Ristaino P (1982) The pathogenicity of nonenterotoxigenic Vibrio cholerae serogroup O1 biotype El Tor isolated from sewage water in Brazil. J Infect Dis 145:296–299

    Article  CAS  Google Scholar 

  • Levine MM, Kaper JB, Herrington D, Losonsky G, Morris JG, Clements ML, Black RE, Tall B, Hall R (1988) Volunteer studies of deletion mutants of Vibrio cholerae O1 prepared by recombinant techniques. Infect Immun 56:161–167

    CAS  Google Scholar 

  • Lindahl M, Faris A, Wastrom T, Hjerten S (1981) A new test based on ‘salting out’ to measure relative surface hydrophobicity of bacterial cells. Biochim Biophys Acta 677:471–476

    Article  CAS  Google Scholar 

  • Magnusson KE, Davies J, Grundstrom T, Kihlstrom E, Normark S (1980) Surface charge and hydrophobicity of Salmonellae, E. coli and Gonococci in relation to their tendency to associate with animal cells. Scand J Infect Dis 24:135–140

    Google Scholar 

  • Mathur J, Waldor MK (2004) The Vibrio cholerae ToxR-regulated porin OmpU confers resistance to antimicrobial peptides. Infect Immun 72:3577–3583

    Article  CAS  Google Scholar 

  • Miller VL, Taylor RK, Mekalanos JJ (1987) Cholera toxin transcriptional activator ToxR is a trans membrane DNA binding protein. Cell 48:271–279

    Article  Google Scholar 

  • Nakasone N, Iwanaga M (1998) Characterization of outer membrane protein OmpU of Vibrio cholerae O1. Infect Immun 66:4726–4728

    CAS  Google Scholar 

  • Nestler L, Evege E, McLaughlin J, Munroe D, Tan T, Wagner K, Stiles B (2004) TrypLE™ express: a temperature stable replacement for animal trypsin in cell dissociation applications. Quest 1:42–47

    Google Scholar 

  • Olafsen JA (2001) Interaction between fish larvae and bacteria in marine aquaculture. Aquaculture 200:223–247

    Article  Google Scholar 

  • Peterson KM, Mekalanos JJ (1988) Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect Immun 56:2822–2829

    CAS  Google Scholar 

  • Provenzano D, Lauriano CM, Klose KE (2001) Characterization of the role of the ToxR-modulated outer membrane porins OmpU and OmpT in Vibrio cholerae virulence. J Bacteriol 183:3652–3662

    Article  CAS  Google Scholar 

  • Ramamurthy T, Bag PK, Pal A, Bhattacharya SK, Bhattacharya MK, Sen D, Shimada T, Takeda T, Nair GB (1993) Virulence patterns of V. cholerae non-O1 isolated from hospitalized patients with acute diarrhea in Calcutta, India. J Med Microbiol 39:310–317

    Article  CAS  Google Scholar 

  • Reddy GSN, Aggarwal RK, Matsumoto GI, Shivaji S (2000) Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561

    Article  CAS  Google Scholar 

  • Rinaldini LMJ (1958) The isolation of living cells from animal tissues. Int Rev Cytol 7:587–647

    Article  CAS  Google Scholar 

  • Rivera ING, Chun J, Huq A, Sack RB, Colwell RR (2001) Genotypes associated with virulence in environmental isolates of Vibrio cholerae. Appl Environ Microb 67:2421–2429

    Article  CAS  Google Scholar 

  • Rosenberg M, Gutnick D, Rossenberg E (1980) Adherence of bacteria to hydrocarbons a simple method for measuring cell surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  • Rous P, Jones FS (1916) A method for obtaining suspensions of living cells from the fixed tissues, and for the plating out of individual cells. J Exp Med 23:549–555

    Article  CAS  Google Scholar 

  • Ruimy R, Breittmayer V, Elbaze P, Lafay B, Boussemart O, Gauthier M, Christen R (1994) Phylogenetic analysis and assessment of the genera Vibrio, Photobacterium, Aeromonas, and Plesiomonas deduced from small subunit rRNA sequences. Int J Syst Bacteriol 44:416–426

    Article  CAS  Google Scholar 

  • Saravanan V, Kumar SH, Karunasagar I, Karunasagar I (2007) Putative virulence genes of Vibrio cholerae from seafoods and the coastal environment of Southwest India. Int J Food Microbiol 119:329–333

    Article  CAS  Google Scholar 

  • Sechi LA, Dupre` I, Deriu A, Fadda G, Zanetti S (2000) Distribution of Vibrio cholerae virulence genes among different Vibrio species isolated in Sardinia, Italy. J Appl Microbiol 88:475–481

    Article  CAS  Google Scholar 

  • Sigma DS, Moser G (1975) Chemical studies of enzyme active sites. Ann Rev Biochem 44:889–931

    Article  Google Scholar 

  • Smirnova NI, Nefedov KS, Osin AV, Livanova LF, Ya Krasnov M (2007) A study of the distribution of regulatory genes controlling an expression of virulence genes among strains of Vibrio Cholerae biovar Eltor differing in their pandemic potential. Mol Gen Microbiol Virol 22:16–23

    Article  Google Scholar 

  • Smyth CJ, Jonsson P, Olsson E, Soderlind O, Rosengren J, Hjerton S, Wadstrom T (1978) Differences in hydrophobic surface characteristics of porcine enteropathogenic Escherichia coli with or without K88 antigen as revealed by hydrophobic interaction chromatography. Infect Immun 22:462–472

    CAS  Google Scholar 

  • Snoussi M, Noumi E, Cheriaa J, Usai D, Sechi LA, Zanetti S, Bakhrouf A (2008) Adhesive properties of environmental Vibrio alginolyticus strains to biotic and abiotic surfaces. New Microbiol 31:489–500

    CAS  Google Scholar 

  • Thompson FL, Iida T, Swings J (2004) Biodiversity of vibrios. Microbiol Mol Biol Res 68:403–431

    Article  CAS  Google Scholar 

  • Vaikkevicius K (2007) Effects of Vibrio cholerae protease and pigment production on environmental survival and host interaction. Umea University, Sweden, Ph D thesis, p 74

    Google Scholar 

  • Venugopal M (2004) Alkaline proteases from bacteria isolated from Cochin estuary India. Cochin University of Science and Technology, Ph D thesis, p 196

  • Venugopal M, Saramma AV (2006) Characterization of alkaline protease from Vibrio fluvialis strain VM 10 isolated from mangrove sediment sample and its application as a laundry detergent additive. Process Biochem 41:1239–1243

    Article  CAS  Google Scholar 

  • Wang S-L, Chio Y-H, Yen Y-H, Wang C-L (2007) Two novel surfactant-stable alkaline protease from Vibrio fluvialis TKU005 and their applications. Enzyme Microb Technol 40:1213–1230

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with the financial assistance from the Department of Biotechnology, Government of India, under Programme Support in Marine Biotechnology (BT/PR4012/AAQ/03/204/2003).The first author thanks the University Grants Commission for Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Bright Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5794 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manjusha, K., Jayesh, P., Jose, D. et al. Alkaline protease from a non-toxigenic mangrove isolate of Vibrio sp. V26 with potential application in animal cell culture. Cytotechnology 65, 199–212 (2013). https://doi.org/10.1007/s10616-012-9472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-012-9472-z

Keywords

Navigation