Skip to main content

Advertisement

Log in

Osteogenic differentiation of human placenta-derived mesenchymal stem cells (PMSCs) on electrospun nanofiber meshes

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Numerous challenges remain in the successful clinical translation of cell-based therapeutic studies for skeletal tissue repair, including appropriate cell sources and viable cell delivery systems. Poly(ethylene glycol)-poly(ε-caprolactone) (PEG-PCL) amphiphilic block copolymers have been extensively explored in microspheres preparation. Due to the introduction of hydrophilic PEG segments into PCL backbones, these copolymers have shown much more potentials in carrying protein, lipophilic drugs or genes than commonly used poly (ε-caprolactone) (PCL) and poly (lactic acid). The aim of this study is to investigate the attachment and osteogenic differentiation of human placenta derived mesenchymal stem cells (PMSCs) on PEG-PCL triblock copolymers nanofiber scaffolds. Here we demonstrated that PMSCs proliferate robustly and can be effectively differentiated into osteogenic-like cells on nanofiber scaffolds. This study provides evidence for the use of nanofiber scaffolds as an ideal supporting material for in vitro PMSCs culture and an in vivo cell delivery vehicle for bone repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bakandritsos A, Mattheolabakis G, Zboril R, Bouropoulos N, Tucek J, Fatouros DG, Avgoustakis K (2010) Preparation, stability and cytocompatibility of agnetic/PLA-PEG hybrids. Nanoscale 2:564–572

    Article  CAS  Google Scholar 

  • Benzinger A, Muster N, Koch HB, Yates JR, Hermeking H (2005) Targeted proteomic analysis of 14–3-3 sigma, a p53 effector commonly silenced in cancer. Mol Cell Proteomics 4:785–795

    Article  CAS  Google Scholar 

  • Brooke G, Cook M, Blair C, Han R, Heazlewood AC, Jones B, Kambouris M, Kollar K, McTaggart S, Pelekanos R, Rice A, Rossetti T, Atkinson K (2007) Therapeutic applications of mesenchymal stromal cells. Semin Cell Dev Biol 118:846–858

    Google Scholar 

  • Brooke G, Rossetti T, Pelekanos R, Ilic N, Murray P, Hancock S, Antonenas V, Huang G, Gottlieb D, Bradstock K, Atkinson K (2009) Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. Br J Haematol 144:571–579

    Article  Google Scholar 

  • Chen XC, Wang R, Zhao X, Wei YQ, Hu M, Wang YS, Zhang XW, Zhang R, Zhang L, Yao B, Wang L, YQ ZengTT, Yang JL, Tian L, Kan B, Lin XJ, Lei S, Deng HX, Wen YJ, Mao YQ, Li J (2006) Prophylaxis against carcinogenesis in three kinds of unestablished tumor models via IL12-gene-engineered MSCs. Carcinogenesis 27:2434–2441

    Article  CAS  Google Scholar 

  • Choi KS, Kim DJ (2002) Drug-releasing behavior of MPEG/PLA block copolymer micelles and solid particles controlled by component block length. J Appl Polym Sci 83:435–445

    Article  CAS  Google Scholar 

  • Cotí KK, Belowich ME, Liong M, Ambrogio MW, Lau YA, Khatib HA, Zink JI, Khashab NM, Stoddart JF (2009) Mechanised nanoparticles for drug delivery. Nanoscale 1:16–39

    Article  Google Scholar 

  • Dzenis Y (2004) Spinning continuous fibers for nanotechnology. Science 304:1917–1919

    Article  CAS  Google Scholar 

  • Einhorn TA, Lee CA (2001) Bone regeneration: new findings and potential clinical applications. J Am Acad Orthop Surg 9:157–165

    CAS  Google Scholar 

  • Evangelista M, Soncini M, Parolini O (2008) Placenta-derived stem cells: new hope for cell therapy? Cytotechnology 58:33–42

    Article  Google Scholar 

  • Fehrer C, Lepperdinger G (2005) Mesenchymal stem cell aging. Exp Gerontol 40:926–930

    Article  CAS  Google Scholar 

  • Ferguson C, Alpern E, Miclau T, Helms JA (1999) Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87:57–66

    Article  CAS  Google Scholar 

  • Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88:873–884

    Article  CAS  Google Scholar 

  • Gou ML, Wu L, Yin QQ, Guo QF, Guo G, Liu J, Zhao X, Wei YQ, Qian ZY (2009) Transdermal anaesthesia with lidocaine nano-formulation pretreated with low-frequency ultrasound in rats model. J Nanosci Nanotechnol 9:6360–6365

    Article  CAS  Google Scholar 

  • Kolambkar YM, Peister A, Ekaputra AK, Kolambkar YM, Peister A, Ekaputra AK, Hutmacher DW, Guldberg RE (2010) Colonization and osteogenic differentiation of different stem cell sources on electrospun nanofiber meshes. Tissue Eng Part A 16:3219–3230

    Article  CAS  Google Scholar 

  • Li WJ, Danielson KG, Alexander PG, Tuan RS (2003) Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res 67A:1105–1114

    Article  CAS  Google Scholar 

  • Liao S, Li BJ, Ma ZW, Wei H, Chan C, Ramakrishna S (2006) Biomimetic electrospun for tissue regeneration. Biomed Mater 1:45–53

    Article  Google Scholar 

  • Mareschi K, Ferrero I, Rustichelli D, Aschero S, Gammaitoni L, Aglietta M, Madon E, Fagioli F (2006) Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem 97:744–754

    Article  CAS  Google Scholar 

  • Miao ZN, Jin J, Chen L, Zhu JZ, Huang W, JD QianHG, Zhang XG (2006) Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 30:681–687

    Article  CAS  Google Scholar 

  • Nosanchuk JD, Sepkowitz KA, Pearse RN, White MH, Nimer SD, Armstrong D (1996) Infectious complications of autologous bone marrow and peripheral stem cell transplantation for refractory leukemia and lymphoma. Bone Marrow Transplant 18:355–359

    CAS  Google Scholar 

  • Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC (2008) Concise review: isolation and characterization of cells from human term placenta: stem cell outcome of the first international workshop on placenta derived stem cells. Stem cells 26:300–311

    Article  Google Scholar 

  • Pederson C, Parran L (1999) Pain in adult recipients of blood or marrow transplant. Cancer Nurs 22:397–407

    Article  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  Google Scholar 

  • Prabhakaran MP, Venugopal JR, Ramakrishna S (2009) Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 30:4996–5003

    Article  CAS  Google Scholar 

  • Quynh PP, Upma S, Antonios G (2006) Mikos electrospun poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 7:2796–2805

    Article  Google Scholar 

  • Shamsul BS, Aminuddin BS, Ng MH, Ruszymah BH (2004) Age and gender effect on the growth of bone marrow stromal cells in vitro. Med J Malaysia 59:196–197

    Google Scholar 

  • Shin HJ, Lee CH, Cho IH, Kim YJ, Lee YJ, Kim IA, Park KD, Yui N, Shin JW (2006) Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Ed 17:103–119

    Article  CAS  Google Scholar 

  • Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-γ delivery into tumors. Cancer Res 62:3603–3608

    CAS  Google Scholar 

  • Suva D, Garavaglia G, Menetrey J, Chapuis B, Hoffmeyer P, Bernheim L, Kindler V (2004) Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal stem cells. J Cell Physiol 198:110–118

    Article  CAS  Google Scholar 

  • Tuzlakoglu K, Bolgen N, Salgado AJ, Gomes ME, Piskin E, Reis RL (2005) Nano and micro-fiber combined scaffolds: a new architecture for bone tissue engineering. J Mater Sci Mater Med 16:1099–1104

    Article  CAS  Google Scholar 

  • Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    Article  CAS  Google Scholar 

  • Venugopal J, Ramakrishna S (2005) Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration. Tissue Eng 11:847–854

    Article  CAS  Google Scholar 

  • Wulf GG, Viereck V, Hemmerlein B, Haase D, Vehmeyer K, Pukrop T, Glass B, Emons G, Trümper L (2004) Mesengenic progenitor cells derived from human placenta. Tissue Eng 10:1136–1147

    CAS  Google Scholar 

  • Xie J, MacEwan MR, Schwartz AG, Xia Y (2010) Electrospun for neural tissue engineering. Nanoscale 2:35–44

    Article  CAS  Google Scholar 

  • Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082

    Article  CAS  Google Scholar 

  • Zhou SB, Deng XM, Yang H (2003) Biodegradable poly(ε-caprolactone)-poly(ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system. Biomaterials 24:3563–3570

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Sciences Foundation of China (30900768).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiping Tong or Gang Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Tong, A., Zhou, L. et al. Osteogenic differentiation of human placenta-derived mesenchymal stem cells (PMSCs) on electrospun nanofiber meshes. Cytotechnology 64, 701–710 (2012). https://doi.org/10.1007/s10616-012-9450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-012-9450-5

Keywords

Navigation