Skip to main content

Advertisement

Log in

Ischemic cardiac tissue conditioned media induced differentiation of human mesenchymal stem cells into early stage cardiomyocytes

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are multipotent, can be easily expanded in culture and hence are an attractive therapeutic tool for cardiac repair. MSCs have tremendous potential to transdifferentiate to cardiac lineage both in vitro and in vivo. The present study examined the differentiation capacity of conditioned media derived from ischemic cardiac tissue on human MSCs. Human Bone marrow-derived MSCs after due characterization by immunocytochemistry and flow cytometry for MSC specific markers were induced by culture media derived from ischemic (n = 13) and non-ischemic (n = 18) human cardiac tissue. Parallel cultures were treated with 5-azacytidine (5-azaC), a potent cardiomyogen. MSCs induced with ischemic conditioned media formed myotube like structures, expressed sarcomeric Troponin I, alpha myosin heavy chain proteins and were positive for cardiac specific markers (Nkx2.5, human atrial natriuretic peptide, myosin light chain-2a, GATA-4) as was observed in 5-azaC treated cells. However, uninduced MSCs as well as those induced with non-ischemic cardiac conditioned media still maintained the fibroblast morphology even after 3 weeks post-induction. Transmission electron microscopic studies of cardiomyocyte-like cells derived from MSCs revealed presence of sarcomeric bands but failed to show gap junctions and intercalated discs as of adult cardiomyocytes. These findings demonstrate that ischemic cardiac conditioned media induces morphological and molecular changes in MSCs with cardiac features, but at a primitive stage. Proteomics analysis of the ischemic conditioned media revealed differential expression of three relevant proteins (C-type lectin superfamily member 13, Testis-specific chromodomain protein Y2 and ADP/ATP translocase 1), whose exact role in cardiac regeneration needs further analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, Papakonstantinou C (2007) In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells. The role of 5-azacytidine. Interact Cardiovasc Thorac Surg 6:593–597

    Article  Google Scholar 

  • Beltrami AP, Urbanek K, Kajustura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami A, Anversa P (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344:1750–1757

    Article  CAS  Google Scholar 

  • Chang SA, Lee EJ, Kang HJ, Zhang SY, Kim JH, Li L, Youn SW, Lee CS, Kim KH, Won JY, Sohn JW, Park KW, Cho HJ, Yang SE, Oh WI, Yang YS, Ho WK, Park YB, Kim HS (2008) Impact of myocardial infarct proteins and oscillating pressure on the differentiation of mesenchymal stem cells: effect of acute myocardial infarction on stem cell differentiation. Stem Cells 26:1901–1912

    Google Scholar 

  • Fraser JK, Schreiber RE, Zuk PA, Hedrick MH (2004) Adult stem cell therapy for the heart. Int J Biochem Cell Biol 36:658–666

    Article  CAS  Google Scholar 

  • Fukuda K, Yuasa S (2003) Stem cells as a source of regenerative cardiomyocytes use of adult marrow mesenchymal stem cells for regeneration of cardiomyocytes. Bone Marrow Transplant 32:S25–S27

    Article  CAS  Google Scholar 

  • Hassink RJ, Brutel de la Rivière A, Mummery CL, Doevendans PA (2003) Transplantation of cells for cardiac repair. J Am Coll Cardiol 41:711–717

    Article  Google Scholar 

  • Heng BC, Haider HK, Sim EK, Cao T, Ng SC (2004) Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro. Cardiovasc Res 62:34–42

    Article  CAS  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Google Scholar 

  • Juttermann R, Li E, Jaenisch R (1994) Toxicity of 5-axa-2-deoxycytidine to mammalian cells is mediated primarily by co-valent trapping of DNA methyl transferase rather than DNA demethylation. Proc Natl Acad Sci USA 19:11797–11801

    Article  Google Scholar 

  • Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, Masaki H, Mori Y, Iba O, Tateishi E, Kosaki A, Shintani S, Murohara T, Imaizumi T, Iwasaka T (2001) Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104:1046–1052

    Google Scholar 

  • Kato M, Khan S, d’Aniello E, McDonald KJ, Hart DN (2007) The novel endocytic and phagocytic D-type lectin receptor DCL-1/CD302 on macrophages is colacalized with F-Actin, sugessing a role in cell adhesion and migration. J Immunol 179:6052–6063

    Google Scholar 

  • Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA (2000) Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342:626–633

    Article  CAS  Google Scholar 

  • Lunardi J, Hurko O, Engel WK, Attardi G (1992) The multiple ADP/ATP translocase genes are differentially expressed during human muscle development. J Biol Chem 267:15267–15270

    CAS  Google Scholar 

  • Mariani MA, Alfonso AD, Croccia M, Limbruno U, Stefano RD, Grandjean JG (2004) Stem cell transplantation for ischemic myocardium. Ital Heart J 5:340–342

    Google Scholar 

  • Ohnishi S, Nagaya N (2007) Prepare cells to repair heart: mesenchymal stem cells for treatment of heart failure. Am J Nephrol 27:301–307

    Article  Google Scholar 

  • Paquin J, Danalache BA, Jankowski M, Mc Cann SM, Gutkowska J (2002) Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes. Proc Natl Acad Sci USA 99:9550–9555

    Article  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Google Scholar 

  • Rose RA, Jiang H, Wang X, Helke S, Tsoporis JN, Gong N, Keating SC, Parker TG, Backx PH, Keating A (2008) Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers retain the stromal phenotype and do not become functional cardiomyocytes invitro. Stem Cells 26:2884–2892

    Google Scholar 

  • Sharpe N (2004) Cardiac remodeling in coronary artery disease. Am J Cardiol 93:17B–20B

    Article  Google Scholar 

  • Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98

    Article  Google Scholar 

  • Tyndall A, Walker UA, Cope A, Dazzi F, De Bari C, Fibbe W, Guiducci S, Jones S, Jorgensen C, Le Blanc K, Luyten F, McGonagle D, Martin I, Bocelli-Tyndall C, Pennesi G, Pistoia V, Pitzalis C, Uccelli A, Wulffraat N, Feldmann M (2007) Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy institute of rheumatology division London UK. 31 October 2005. Arthritis Res Ther 9:301

    Google Scholar 

  • Ventura C, Cantoni S, Bianchi F (2007) Hyaluronan mixed esters of butyric and retinoic acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infracted rat hearts. J Biol Chem 282:14243–14252

    Article  CAS  Google Scholar 

  • Weissberg PL, Qasim A (2005) Stem cell therapy for myocardial repair. Heart 91:696–702

    Article  Google Scholar 

  • Wu H, Min J, Antoshenko T, Plotnikov AN (2009) Crystal structures of human CDY proteins reveal a crotonase-like fold proteins. Proteins 76:1054–1061

    Article  CAS  Google Scholar 

  • Zhang SX, Garcia-Gras E, Wycuff DR, Marriot SJ, Kadeer N, Yu W, Olson EN, Garry DJ, Parmacek MS, Schwartz RJ (2005) Identification of direct serum-response factor gene targets during Me2SO-induced P19 cardiac cell differentiation. J Biol Chem 280:19115–19126

    Google Scholar 

Download references

Acknowledgments

Our thanks are due to the Indian council of medical research (ICMR) for partial funding this project and our team members Dr. Santhosh Mathapati, Mr. Satish Galla, Ms. Sheerin Begam Naser and Mr. A. Pandian for their kind help rendered.

Conflict of interest

The authors have no conflict of interest to disclose with regard to the subject matter of this present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soma Guhathakurta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, B., Bishi, D.K., Rallapalli, S. et al. Ischemic cardiac tissue conditioned media induced differentiation of human mesenchymal stem cells into early stage cardiomyocytes. Cytotechnology 64, 563–575 (2012). https://doi.org/10.1007/s10616-012-9440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-012-9440-7

Keywords

Navigation