Skip to main content

Advertisement

Log in

Cytocentrifugation: a convenient and efficient method for seeding tendon-derived cells into monolayer cultures or 3-D tissue engineering scaffolds

  • Method in Cell Science
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Tendon and ligament injuries are very common, requiring some 200,000 reconstructions per year in the USA. Autografting can be used to repair these but donor tissue is limited and harvesting leads to morbidity at the graft sites. Tissue engineering has been used to grow simple tissues such as skin, cartilage and bone and due to their low vascularity and simple structure, tendons should be ideal candidates for such an approach. Scaffolds are essential for tissue engineering as they provide structure and signals that regulate growth. However, they present a physical barrier to cell seeding with the majority of the cells congregating at the scaffold surface. To address this we used centrifugation to enhance penetration of tendon-derived cells to the centres of 3-D scaffolds. The process had no apparent deleterious effects on the cells and both plating efficiency and cell distribution improved. After attachment the cells continued to proliferate and deposit a collagenous matrix. Scaffold penetration was investigated using layers of Azowipes allowing the separation and examination of individual leaves. At relatively low g-forces, cells penetrated a stack of 6 Azowipes leaving cells attached to each leaf. These data suggest that cytocentrifugation improves the penetration and homogeneity of tendon derived cells in 3-D and monolayer cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246

    Article  Google Scholar 

  • Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS (1998) Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 14:726–737

    Article  CAS  Google Scholar 

  • Beams HW, Tahmisian TN, Anderson E, Devine R (1960) Studies on the fine structure of ultracentrifuged spinal ganglion cells. J Biophys Biochem Cytol 8:793–811

    Article  CAS  Google Scholar 

  • Bok M, Li H, Yeo LY, Friend JR (2009) The dynamics of surface acoustic wave-driven scaffold cell seeding. Biotechnol Bioeng 103:387–401

    Article  CAS  Google Scholar 

  • Butler DL, Juncosa N, Dressler MR (2004) Functional efficacy of tendon repair processes. Annu Rev Biomed Eng 6:303–329

    Article  CAS  Google Scholar 

  • Calve S, Dennis RG, Kosnik PE 2nd, Baar K, Grosh K, Arruda EM (2004) Engineering of functional tendon. Tissue Eng 10:755–761

    Article  Google Scholar 

  • Chuen FS, Chuk CY, Ping WY, Nar WW, Kim HL, Ming CK (2004) Immunohistochemical characterization of cells in adult human patellar tendons. J Histochem Cytochem 52:1151–1157

    Article  CAS  Google Scholar 

  • Currie GA (1981) Platelet-derived growth-factor requirements for in vitro proliferation of normal and malignant mesenchymal cells. Br J Cancer 43:335–343

    Article  CAS  Google Scholar 

  • Dai W, Dong J, Chen G, Uemura T (2009) Application of low-pressure cell seeding system in tissue engineering. Biosci Trends 3:216–219

    Google Scholar 

  • Dobson KR, Reading L, Haberey M, Marine X, Scutt A (1999) Centrifugal isolation of bone marrow from bone: an improved method for the recovery and quantitation of bone marrow osteoprogenitor cells from rat tibiae and femurae. Calcif Tissue Int 65:411–413

    Article  CAS  Google Scholar 

  • Dunn JC, Chan WY, Cristini V, Kim JS, Lowengrub J, Singh S, Wu BM (2006) Analysis of cell growth in three-dimensional scaffolds. Tissue Eng 12:705–716

    Article  CAS  Google Scholar 

  • Friedenstein AJ, Latzinik NV, Gorskaya Yu F, Luria EA, Moskvina IL (1992) Bone marrow stromal colony formation requires stimulation by haemopoietic cells. Bone Miner 18:199–213

    Article  CAS  Google Scholar 

  • Funatsu K, Ijima H, Nakazawa K, Yamashita Y, Shimada M, Sugimachi K (2001) Hybrid artificial liver using hepatocyte organoid culture. Artif Organs 25:194–200

    Article  CAS  Google Scholar 

  • Garvin J, Qi J, Maloney M, Banes AJ (2003) Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 9:967–979

    Article  CAS  Google Scholar 

  • Giorgetti M, Giannessi E, Ricciardi MP (2001) Expanded polytetrafluoroethylene as tendon replacement: an experimental study in chickens. Scand J Plast Reconstr Surg Hand Surg 35:23–27

    Article  CAS  Google Scholar 

  • Godbey WT, Hindy SB, Sherman ME, Atala A (2004) A novel use of centrifugal force for cell seeding into porous scaffolds. Biomaterials 25:2799–2805

    Article  CAS  Google Scholar 

  • Hollander AP, Dickinson SC, Sims TJ, Brun P, Cortivo R, Kon E, Marcacci M, Zanasi S, Borrione A, De Luca C, Pavesio A, Soranzo C, Abatangelo G (2006) Maturation of tissue engineered cartilage implanted in injured and osteoarthritic human knees. Tissue Eng 12:1787–1798

    Article  CAS  Google Scholar 

  • Juncosa-Melvin N, Boivin GP, Galloway MT, Gooch C, West JR, Butler DL (2006a) Effects of cell-to-collagen ratio in stem cell-seeded constructs for Achilles tendon repair. Tissue Eng 12:681–689

    Article  CAS  Google Scholar 

  • Juncosa-Melvin N, Boivin GP, Gooch C, Galloway MT, West JR, Dunn MG, Butler DL (2006b) The effect of autologous mesenchymal stem cells on the biomechanics and histology of gel-collagen sponge constructs used for rabbit patellar tendon repair. Tissue Eng 12:369–379

    Article  CAS  Google Scholar 

  • Koob TJ (2002) Biomimetic approaches to tendon repair. Comp Biochem Physiol 133:1171–1192

    Article  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  Google Scholar 

  • LaRue KE, Khalil M, Freyer JP (2004) Microenvironmental regulation of proliferation in multicellular spheroids is mediated through differential expression of cyclin-dependent kinase inhibitors. Cancer Res 64:1621–1631

    Article  CAS  Google Scholar 

  • Lee M, Wu BM, Dunn JC (2008) Effect of scaffold architecture and pore size on smooth muscle cell growth. J Biomed Mater Res A 87:1010–1016

    Google Scholar 

  • Li H, Friend JR, Yeo LY (2007) A scaffold cell seeding method driven by surface acoustic waves. Biomaterials 28:4098–4104

    Article  CAS  Google Scholar 

  • Li J, Jiang L, Liao G, Chen G, Liu Y, Wang J, Zheng Y, Luo S, Zhao Z (2009) Centrifugal forces within usually-used magnitude elicited a transitory and reversible change in proliferation and gene expression of osteoblastic cells UMR-106. Mol Biol Rep 36:299–305

    Article  CAS  Google Scholar 

  • Liu Y, Zhang L, Zhou G, Li Q, Liu W, Yu Z, Luo X, Jiang T, Zhang W, Cao Y (2010) In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology. Biomaterials 31:2176–2183

    Article  CAS  Google Scholar 

  • Lopez-De Leon A, Rojkind M (1985) A simple micromethod for collagen and total protein determination in formalin-fixed paraffin-embedded sections. J Histochem Cytochem 33:737–743

    Article  CAS  Google Scholar 

  • Lowenberg BF, Pilliar RM, Aubin JE, Sodek J, Melcher AH (1988) Cell attachment of human gingival fibroblasts in vitro to porous-surfaced titanium alloy discs coated with collagen and platelet-derived growth factor. Biomaterials 9:302–309

    Article  CAS  Google Scholar 

  • Lui PP, Cheuk YC, Hung LK, Fu SC, Chan KM (2007) Increased apoptosis at the late stage of tendon healing. Wound Repair Regen 15:702–707

    Article  Google Scholar 

  • Maidhof R, Marsano A, Lee EJ, Vunjak-Novakovic G (2010) Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnol Prog 26:565–572

    CAS  Google Scholar 

  • Mueller-Klieser W (1987) Multicellular spheroids. A review on cellular aggregates in cancer research. J Cancer Res Clin Oncol 113:101–122

    Article  CAS  Google Scholar 

  • Nau T, Lavoie P, Duval N (2002) A new generation of artificial ligaments in reconstruction of the anterior cruciate ligament. Two-year follow-up of a randomised trial. J Bone Joint Surg Br 84:356–360

    Article  CAS  Google Scholar 

  • Ng R, Gurm JS, Yang ST (2010) Centrifugal seeding of mammalian cells in nonwoven fibrous matrices. Biotechnol Prog 26:239–245

    Article  CAS  Google Scholar 

  • Ohyabu Y, Adegawa T, Yoshioka T, Ikoma T, Shinozaki K, Uemura T, Tanaka J (2009) A collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite as a scaffold for cartilage tissue engineering. J Biomater Sci Polym Ed 20:1861–1874

    Article  CAS  Google Scholar 

  • Ouyang HW, Goh JC, Thambyah A, Teoh SH, Lee EH (2003) Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Eng 9:431–439

    Article  CAS  Google Scholar 

  • Petite H, Hannouche D (2002) Marrow stromal stem cells for repairing the skeleton. Biotechnol Genet Eng Rev 19:83–101

    Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  Google Scholar 

  • Qin TW, Yang ZM, Wu ZZ, Xie HQ, Qin J, Cai SX (2005) Adhesion strength of human tenocytes to extracellular matrix component-modified poly(DL-lactide-co-glycolide) substrates. Biomaterials 26:6635–6642

    Article  CAS  Google Scholar 

  • Rickard DJ, Kazhdan I, Leboy PS (1995) Importance of 1,25-dihydroxyvitamin D3 and the nonadherent cells of marrow for osteoblast differentiation from rat marrow stromal cells. Bone 16:671–678

    Article  CAS  Google Scholar 

  • Risbud M (2001) Tissue engineering: implications in the treatment of organ and tissue defects. Biogerontology 2:117–125

    Article  CAS  Google Scholar 

  • Roh JD, Nelson GN, Udelsman BV, Brennan MP, Lockhart B, Fong PM, Lopez-Soler RI, Saltzman WM, Breuer CK (2007) Centrifugal seeding increases seeding efficiency and cellular distribution of bone marrow stromal cells in porous biodegradable scaffolds. Tissue Eng 13:2743–2749

    Article  CAS  Google Scholar 

  • Scott A, Cook JL, Hart DA, Walker DC, Duronio V, Khan KM (2007) Tenocyte responses to mechanical loading in vivo: a role for local insulin-like growth factor 1 signaling in early tendinosis in rats. Arthritis Rheum 56:871–881

    Article  CAS  Google Scholar 

  • Scutt A, Bertram P (1995) Bone marrow cells are targets for the anabolic actions of prostaglandin E2 on bone: induction of a transition from nonadherent to adherent osteoblast precursors. J Bone Miner Res 10:474–487

    Article  CAS  Google Scholar 

  • Scutt A, Zeschnigk M, Bertram P (1995) PGE2 induces the transition from non-adherent to adherent bone marrow mesenchymal precursor cells via a cAMP/EP2-mediated mechanism. Prostaglandins 49:383–395

    Article  CAS  Google Scholar 

  • Seo YR, Sweeney C, Smith ML (2002) Selenomethionine induction of DNA repair response in human fibroblasts. Oncogene 21:3663–3669

    Article  CAS  Google Scholar 

  • Shimizu K, Ito A, Honda H (2006) Enhanced cell-seeding into 3D porous scaffolds by use of magnetite nanoparticles. J Biomed Mater Res B Appl Biomater 77:265–272

    Google Scholar 

  • Shimizu K, Ito A, Honda H (2007) Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering. J Biosci Bioeng 104:171–177

    Article  CAS  Google Scholar 

  • Silver FH, Tria AJ, Zawadsky JP, Dunn MG (1991) Anterior cruciate ligament replacement: a review. J Long Term Eff Med Implants 1:135–154

    CAS  Google Scholar 

  • Srivastava S, Gorham SD, Courtney JM (1990) The attachment and growth of an established cell line on collagen, chemically modified collagen, and collagen composite surfaces. Biomaterials 11:162–168

    Article  CAS  Google Scholar 

  • Sun T, Norton D, Haycock JW, Ryan AJ, MacNeil S (2005) Development of a closed bioreactor system for culture of tissue-engineered skin at an air-liquid interface. Tissue Eng 11:1824–1831

    Article  CAS  Google Scholar 

  • Sun T, Jackson S, Haycock JW, MacNeil S (2006) Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J Biotechnol 122:372–381

    Article  CAS  Google Scholar 

  • Tanswell AK, Byrne PJ, Han RN, Edelson JD, Han VK (1991) Limited division of low-density adult rat type II pneumocytes in serum-free culture. Am J Physiol 260:L395–L402

    CAS  Google Scholar 

  • Toselli P, Mogayzel PJ, Jr., Faris B, Ferrera R, Franzblau C (1984) Mammalian cell growth on collagen-hydrogels. Scan Electron Microsc (Pt 3):1301–1312

  • Weinand C, Xu JW, Peretti GM, Bonassar LJ, Gill TJ (2009) Conditions affecting cell seeding onto three-dimensional scaffolds for cellular-based biodegradable implants. J Biomed Mater Res B Appl Biomater 91:80–87

    Google Scholar 

  • Wu YF, Chen CH, Cao Y, Avanessian B, Wang XT, Tang JB (2010) Molecular events of cellular apoptosis and proliferation in the early tendon healing period. J Hand Surg Am 35:2–10

    Article  CAS  Google Scholar 

  • Xiao YL, Riesle J, Van Blitterswijk CA (1999) Static and dynamic fibroblast seeding and cultivation in porous PEO/PBT scaffolds. J Mater Sci Mater Med 10:773–777

    Article  CAS  Google Scholar 

  • Zhu N, Warner RM, Simpson C, Glover M, Hernon CA, Kelly J, Fraser S, Brotherston TM, Ralston DR, MacNeil S (2005) Treatment of burns and chronic wounds using a new cell transfer dressing for delivery of autologous keratinocytes. Eur J Plast Surg 28:319–330

    Article  Google Scholar 

  • Zwingmann J, Mehlhorn AT, Sudkamp N, Stark B, Dauner M, Schmal H (2007) Chondrogenic differentiation of human articular chondrocytes differs in biodegradable PGA/PLA scaffolds. Tissue Eng 13:2335–2343

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Scutt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Way, L., Scutt, N. & Scutt, A. Cytocentrifugation: a convenient and efficient method for seeding tendon-derived cells into monolayer cultures or 3-D tissue engineering scaffolds. Cytotechnology 63, 567–579 (2011). https://doi.org/10.1007/s10616-011-9391-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-011-9391-4

Keywords

Navigation