Skip to main content
Log in

Transition of basic protein during spermatogenesis of Fenneropenaeus chinensis (Osbeck, 1765)

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

According to the ultrastructural characteristic observation of the developing male germ cells, spermatogenesis of the crustacean shrimp, Fenneropenaeus chinensis, is classified into spermatogonia, primary spermatocytes, secondary spermatocyte, four stages of spermatids, and mature sperm. The basic protein transition during its spermatogenesis is studied by transmission electron microscopy of ammoniacal silver reaction and immunoelectron microscopical distribution of acetylated histone H4. The results show that basic protein synthesized in cytoplasm of spermatogonia is transferred into the nucleus with deposition on new duplicated DNA. In the spermatocyte stage, some nuclear basic protein combined with RNP is transferred into the cytoplasm and is involved in forming the cytoplasmic vesicle clumps. In the early spermatid, most of the basic protein synthesized in the new spermatid cytoplasm is transferred into the nucleus, and the chromatin condensed gradually, and the rest is shifted into the pre-acrosomal vacuole. In the middle spermatid, the nuclear basic protein linked with DNA is acetylated and transferred into the proacrosomal vacuole and assembled into the acrosomal blastema. At the late spermatid, almost all of the basic protein in the nucleus has been removed into the acrosome. During the stage from late spermatid to mature sperm, some de novo basic proteins synthesized in the cytoplasm belt transfer into the nucleus without a membrane and almost all deposit in the periphery to form a supercoating. The remnant histone H4 accompanied by chromatin fibers is acetylated in the center of the nucleus, leading to relaxed DNA and activated genes making the nucleus non-condensed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Armand Z, Jamie L (2006) Sperm DNA damage: clinical significance in the era of assisted reproduction. CMAJ 175:495–500

    Article  Google Scholar 

  • Blackwell JS Jr, Wilkinson ST, Mosammaparast N, Pemberton LF (2007) Mutational analysis of H3 and H4N termini reveals distinct roles in nuclear import. J Biol Chem 282:20142–20150

    Article  CAS  Google Scholar 

  • Bloch DP (1966) Histone differentiation and nuclear activity. Chromosoma 19:317–339

    Article  CAS  Google Scholar 

  • Braun RE (2001) Packaging paternal chromosomes with protamine. Nat Genet 28:10–12

    CAS  Google Scholar 

  • Catena R, Ronfani L, Sassone-Corsi P, Davidson I (2006) Changes in intranuclear chromatin architecture induce bipolar nuclear localization of histone variant H1T2 in male haploid spermatids. Dev Biol 296:231–238

    Article  CAS  Google Scholar 

  • Chevaillier P (1966) Contribution a I’etude du complexe ADN-histone dans le spermatozide du pagure Eupagurus bernhardus L. (Crustace Decapode). J Microsc 5:739–758

    CAS  Google Scholar 

  • Chevaillier P (1967) Mise en evidence et étude cytochimique d’une proteine basique extanuleaire dans les spematozoides des crustaces decapodes. J Cell Biol 32:547–556

    Article  CAS  Google Scholar 

  • Chevaillier P (1968) Etude cytochimique ultrastructurale des nucleoproteins dans le spematozoide du pagurus Eupagurus bernhardus L. (Crustace Decapode). J Microsc 7:107–114

    Google Scholar 

  • Chicoine LG, Schulman IG, Richman R, Cook RG, Allis CD (1986) Nonrandom utilization of acetylation sites in histones isolated from tetrahymena evidence for functionally distinct H4 acetylation sites. J Biol Chem 261:1071–1076

    CAS  Google Scholar 

  • Choi J, Kim B, Heo K, Kim K, Kim H, Zhan Y, Ranish JA, An W (2007) Purification and characterization of cellular proteins associated with histone H4 tails. J Biol Chem 282:21024–21031

    Google Scholar 

  • Cousens LS, Alberts BM (1982) Accessibility of newly synthesized chromatin to histone acetylase. J Biol Chem 257:3945–3949

    CAS  Google Scholar 

  • Davie JR, Hendzel MJ (1994) Multiple functions of dynamic histone acetylation. J Cell Biochem 55:98–105

    Article  CAS  Google Scholar 

  • Du NS, Lai W, Xue LZ (1987) Studies on the sperm of Chinese mitten-handed crab, Eriocheir sinensis (Crustacea Decapoda). The morphology and ultrastructure of mature sperm. Oceanol Limnol Sin 18:120–125

    Google Scholar 

  • Faure AK, Pivot-Pajot C, Kerjean A et al (2003) Misregulation of histone acetylation in Sertoli cell-only syndrome and testicular cancer. Mol Hum Reprod 9:757–763

    Article  CAS  Google Scholar 

  • Ge SQ, Kang XJ, Guo MS, Mu SM (2008a) The immunolocalization of basic protein H4 during spermatogenesis of Fenneropenaeus chinensis. J Hebei Univ 28:187–192

    CAS  Google Scholar 

  • Ge SQ, Kang XJ, Liu GR, Mu SM (2008b) Genes involved in spermatogenesis. Hereditas 30:3–12

    CAS  Google Scholar 

  • Hammoud S, Emery BR, Dunn D, Weiss RB, Carrell DT (2009a) Sequence alterations in the YBX2 gene are associated with male factor infertility. Fertil Steril 91:1090–1095

    Article  CAS  Google Scholar 

  • Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009b) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478

    CAS  Google Scholar 

  • Hecht N, Behr R, Hild A, Bergmann M, Weidner W, Steger K (2009) The common marmoset (Callithrix jacchus) as a model for histone and protamine expression during human spermatogenesis. Hum Reprod 24:536–545

    Article  CAS  Google Scholar 

  • Jackson V, Shires A, Tanphaichitr N, Chalkley R (1976) Modifications to histones immediately after synthesis. J Mol Biol 104:471–483

    Article  CAS  Google Scholar 

  • Kang XJ, Wang SA (2000) Studies on the changes of morphology and structure of the spermatozoon in Penaeus chinensis. Donghai Mar Sci 18:40–46

    Google Scholar 

  • Kang XJ, Wang SA, Du NS, Lai W (2000) Study on the endoplasmic reticulum variation during spermatogenesis in Penaeus chinensis. J Xiamen Univ 39:849–854

    Google Scholar 

  • Kang XJ , Li SJ , Wang GZ, Xiang YM (2001) Distribution of basic proteins of sperm and fertilization in Scylla serrata. Acta Zool Sin 47(monograph):82–86

    Google Scholar 

  • Kang X, Ge S, Guo M, Liu G, Mu S (2008) A transmission electron microscopy investigation: the membrane complex in spermatogenesis of Fenneropenaeus chinensis. Cytotechnology 56:113–121

    Article  Google Scholar 

  • Kimmins S, Sassone-Corsi P (2005) Chromatin remodelling and epigenetic features of germ cells. Nature 434:583–589

    Article  CAS  Google Scholar 

  • Kleve MG, Yudin AI, Clark WH (1980) Fine structure of the unistellate sperm of the shrimp, Sicyonia ingentis (Natantia). Tissue Cell 12:29–45

    Article  CAS  Google Scholar 

  • Kurtz K, Martínez-Soler F, Ausió J, Chiva M (2008) Histones and nucleosomes in cancer sperm (Decapod: Crustacean) previously described as lacking basic DNA-associated proteins A new model of sperm chromatin. J Cell Biochem 105:574–584

    Article  CAS  Google Scholar 

  • Kurtz K, Ausi J, Chiva M (2009) Preliminary study of sperm chromatin characteristics of the brachyuran crab Maja brachydactyla. Histones and nucleosome-like structures in decapod crustacean sperm nuclei previously described without SNBPs. Tissue Cell 41:334–344

    Article  CAS  Google Scholar 

  • Lahn BT, Tang ZL, Zhou J, Barndt RJ, Parvinen M, Allis CD, Page DC (2002) Previously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis. Proc Natl Acad Sci USA 99:8707–8712

    Google Scholar 

  • Langreth SG (1969) Spermiogenesis in Cancer crabs. J Cell Biol 43:575–603

    Article  CAS  Google Scholar 

  • Liu GR (2006) Study on the nuclear basic proteins and acid phosphatase during spermiogenesis in some species of Decapoda Crustacea. Master thesis, Hebei University

  • Manochantr S, Sretarugsa P, Wanichanon C, Chavadej J, Sobhon P (2003) Classification of spermatogenic cells in Rana tigerina based on ultrastructure. Sci Asia 29:241–254

    Article  Google Scholar 

  • Martianov I, Brancorsini S, Catena R, Gansmuller A, Kotaja N, Parvinen M, Sassone-Corsi P, Davidson I (2005) Polar nuclear localisation of H1T2: a histone H1 variant required for spermatid elongation and DNA condensation during spermiogenesis. Proc Natl Acad Sci USA 102:2808–2813

    Article  CAS  Google Scholar 

  • Meistrich ML, Trostle-Weige PK, Lin R, Bhatnagar YM, Allis CD (1992) Highly acetylated H4 is associated with histone displacement in rat spermatids. Mol Reprod Dev 31:170–181

    Article  CAS  Google Scholar 

  • Poljaroen J, Vanichviriyakit R, Tinikul Y, Phoungpetchara I, Linthong V, Weerachatyanukul W, Sobhon P (2010) Spermatogenesis and distinctive mature sperm in the giant freshwater prawn, Macrobrachium rosenbergii (De Man, 1879). Zool Anz 249:81–94

    Article  Google Scholar 

  • Rathke C, Baarends WM, Jayaramaiah-Raja S, Bartkuhn M, Renkawitz R, Renkawitz-Pohl R (2007) Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. J Cell Sci 120:1689–1700

    Article  CAS  Google Scholar 

  • Roosen CE (1969) Comparative aspects of spermatogenesis. Biol Reprod 1:24–39

    Article  Google Scholar 

  • Ruiz-Carrillo A, Wangh LJ, Allfrey VG (1975) Processing of newly synthesized histone molecules. Science 190:117–128

    Article  CAS  Google Scholar 

  • Sassone-Corsi P (2002) Unique chromatin remodelling and transcriptional regulation in spermatogenesis. Science 296:2176–2178

    Article  CAS  Google Scholar 

  • Sealy L, Chalkley R (1979) Modification of histones immediately following synthesis. Arch Biochem Biophys 197:78–82

    Article  CAS  Google Scholar 

  • Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD (1995) Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci USA 92:1237–1241

    Article  CAS  Google Scholar 

  • Sobhon P, Apisawetakan S, Linthong V, Pankao V, Wanichanon C, Meepool A, Kruatrachue M, Upatham ES, Pumthong T (2001) Ultrastructure of differentiating male germ cells in Haliotis asinina Linnaeus. Invert Reprod Dev 39:55–66

    Article  Google Scholar 

  • Tanaka H, Iguchi N, Isotani A, Kitamura K, Toyama Y, Matsuoka Y, Onishi M, Masai K, Maekawa M, Toshimori K, Okabe M, Nishimune Y (2005) HANP1/H1T2, a novel histone H1-like protein involved in nuclear formation and sperm fertility. Mol Cell Biol 25:7107–7119

    Article  CAS  Google Scholar 

  • Tanphaichitr N, Sobhon P, Taluppeth N, Chalermisarachai P (1978) Basic nuclear proteins in testicular cells and ejaculated spermatozoa in man. Exp Cell Res 117:347–350

    Article  CAS  Google Scholar 

  • Thorne AW, Kmiciek D, Mitchelson K, Sautiere P, Crane-Robinson C (1990) Patterns of histone acetylation. Eur J Biochem 193:701–713

    Article  CAS  Google Scholar 

  • Vaughn JC, Hinsch GW (1972) Isolation and characterization of chromatin and DNA from the sperm of the spider crab, Libinia emarginata. J Cell Sci 11:131–152

    CAS  Google Scholar 

  • Vaughn JC, Locy RD (1968) Changing nuclear histone patterns during development I fertilization and early cleavage in the crab Emerita analoga. J Histochem Cytochem 167:473–479

    Article  Google Scholar 

  • Vaughn JC, Thomson LA (1972) A kinetic study of DNA and basic protein metabolism during spermatogenesis in the sand crab, Emerita analoga. J Cell Biol 52:322–337

    Article  CAS  Google Scholar 

  • Wang YL, Zhang ZP, Li SJ (1996) Basic proteins changes during spermatogenesis in Metapenaeus ensis. J Xiamen Univ 35:947–995

    CAS  Google Scholar 

  • Wang YL, Zhang ZP, Li SJ (1997) Ultrastructure of spermatogenesis in the crab Scylla serrata. Acta Zool Sin 43:249–254

    Google Scholar 

  • Wang YL, Zhang ZP, Li SJ (1998) Ultrastructure of spermiogenesis in the shrimp Penaeus penicillatus. Oceanol Limnol Sin 29:582–587

    Google Scholar 

  • Wu CG, Xiang JH, Liu RY (1999) Study on oocyte activation in Penaeus chinensis. Acta Oceanol Sin 21:136–143

    Google Scholar 

  • Wu C, Wu CG, Xiang JH (2002) Ultrastructure and protein composition changes during acrosome reaction in the sperm of Chinese shrimp, Fenneropenaeus Chinensis. Dev Reprod Biol 11:22–28

    Google Scholar 

  • Wykes SM, Krawetz SA (2003) The structural organization of sperm chromatin. J Biol Chem 278:29471–29477

    Article  CAS  Google Scholar 

  • Yan W, Ma L, Burns KH, Matzuk MM (2003) HILS1 is a spermatid-specific linker histone H1-like protein implicated in chromatin remodeling during mammalian spermiogenesis. Proc Natl Acad Sci USA 100:10546–10551

    Article  CAS  Google Scholar 

  • Yang WX (1998) Studies on changes in three organelle during spermatogenesis of Macrobrachium nipponense (DE HAAN). Chin J Appl Environ Biol 4:49–54

    Google Scholar 

  • Yang WX, Du NS, Lai W (1998) Changes of Golgi apparatus during spermatogenesis of Macrobrachium nipponense. Acta Zool Sin 44:377–388

    CAS  Google Scholar 

  • Zhao YL, Du NS, Lai W (1997) Spermatogenesis of freshwater shrimp Macrobrachium nipponense (Crustacea Decapoda). Acta Zool Sin 43:243–248

    Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation (China, 30371115), the Natural Science Foundation from the Department of Education of Hebei Province (Hebei China, 2009105), the Research Plan Foundation from Hebei Population and Family Planning Committee (Hebei China, 2009-B16) and the Medical Science Foundation from Public Health Department of Hebei Province (Hebei China, 20090173) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoqin Ge, Xianjiang Kang or Fei Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, S., Wang, S., Kang, X. et al. Transition of basic protein during spermatogenesis of Fenneropenaeus chinensis (Osbeck, 1765). Cytotechnology 63, 581–598 (2011). https://doi.org/10.1007/s10616-011-9364-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-011-9364-7

Keywords

Navigation