, Volume 63, Issue 4, pp 407–413 | Cite as

In vitro cytotoxic potential of newly synthesized furo[3,2-c]pyran-4-one derivatives in cultured human lymphocytes

  • Halil Erhan Eroğlu
  • İrfan Koca
  • İsmail Yıldırım
Original Research


The in vitro cytotoxic potentials of Furo[3,2-c]pyran-4-one derivatives in human lymphocytes were investigated. Blood samples were obtained from six healthy donors, non-smoking volunteers, which were incubated and exposed to increasing concentrations (0.05, 0.1, 0.5, 1 and 2 mg/mL) of Furo[3,2-c]pyran-4-one derivatives which are methyl 2-methoxy-7-(4-methylbenzoyl)-6-(4-methylphenyl)-4-oxo-4H-furo[3,2-c]pyran-3-carboxylate (1a) and methyl 2-methoxy-7-(4-methoxybenzoyl)-6-(4-methoxyphenyl)-4-oxo-4H-furo[3,2-c]pyran-3-carboxylate (1b). Compounds 1a and 1b induced micronucleus, mitotic and replication indexes in human lymphocytes (1 and 2 mg/mL). The increases of micronucleus, mitotic and replication indexes show that compounds at high concentrations may become cytotoxic, genotoxic and carcinogenic.


Cytotoxic Furo[3,2-c]pyran-4-one Neo-tanshinlactone 


  1. Aramaki Y, Kazuhiro C, Masahiro T (1995) Spiro-lactones, hyperolactone A-D from Hypericum chinense. Phytochemistry 38:1419–1421CrossRefGoogle Scholar
  2. Arslan M, Topaktas M, Rencuzogullari E (2008) The effects of boric acid on sister chromatid exchanges and chromosome aberrations in cultured human lymphocytes. Cytotechnology 56:91–96CrossRefGoogle Scholar
  3. Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78:431–441CrossRefGoogle Scholar
  4. Carvalho MB (1997) Historia natural do cancer da cavidade oral. In: Rapopart A (ed) Cancer da Boca. Pancast, Sao Paulo, pp 17–29Google Scholar
  5. Desai SS, Ghaisas SD, Jakhi SD, Bhide SV (1996) Cytogenetic damage in exfoliated oral muosa cells and circulating lymphocytes of patients suffering from precancerous oral lesions. Cancer Lett 109:9–14CrossRefGoogle Scholar
  6. Dong Y, Shi Q, Nakagawa-Goto K, Wua P, Morris-Natschke SL, Brossia A, Bastow KF, Lang J, Hung M, Lee K (2010) Antitumor agents 270. Novel substituted 6-phenyl-4H-furo[3,2-c]pyran-4-one derivatives as potent and highly selective anti-breast cancer agents. Bioorgan Med Chem 18:803–808CrossRefGoogle Scholar
  7. Eroğlu HE, Aksoy A, Hamzaoğlu E, Budak Ü, Albayrak S (2009) Cytogenetic effects of nine Helichrysum taxa in human lymphocytes culture. Cytotechnology 59:65–72CrossRefGoogle Scholar
  8. Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95Google Scholar
  9. Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res 147:29–36Google Scholar
  10. Heddle JA, Hite M, Kirkhart B, Mavournin K, MacGregor JT, Newell GW, Salamone MF (1983) The induction of micronuclei as a measure of genotoxicity. A report of the US environmental protection agency Gene Tox. program. Mutat Res 123:61–118Google Scholar
  11. Holland NT, Duramad P, Rothman N, Figgs LW, Blair A, Hubbard A, Smith MT (2002) Micronucleus frequency and proliferation in human lymphocytes after exposure to herbicide 2, 4-dichlorophenoxyacetic acid in vitro and in vivo. Mutat Res 521:165–178Google Scholar
  12. Kim JP, Yun BS, Shim YK, Yoo ID (1999) Inoscavin A, a new free radical scavenger from the mushroom Inonotus xeranticus. Tetrahedron Lett 40:6643–6644CrossRefGoogle Scholar
  13. Koca İ, Yıldırım İ, Şahin E (2010) Multicomponent reactions of furan-2, 3-diones: synthesis and characterizations of furo[3, 2-c]pyran-4-ones. Helv Chim Acta 93:1336–1343CrossRefGoogle Scholar
  14. Kojima K, Ohno T, Inoue M, Mizukami H, Nagatsu A (2008) Phellifuropyranone A: a new furopyranone compound isolated from fruit bodies of wild Phellinus linteus. Chem Pharm Bull 56:173–175CrossRefGoogle Scholar
  15. Magedov IV, Manpadi M, Ogasawara MA, Dhawan AS, Rogelj S, Van Slambrouck S, Steelant WFA, Evdokimov NM, Uglinskii PY, Elias EM, Knee EJ, Tongwa P, Antipin MY, Kornienko A (2008) Structural simplification of bioactive natural products with multicomponent synthesis. 2. Antiproliferative and antitubulin activities of pyrano[3, 2-c]pyridones and pyrano[3, 2-c]quinolones. J Med Chem 51:2561–2570CrossRefGoogle Scholar
  16. Mo SY, He WY, Yang YC, Shi JG (2003) Two pyrone derivatives from fungus Phellinus igniarius. Chin Chem Lett 14:704–706Google Scholar
  17. Mo S, Wang S, Zhou G, Yang Y, Li Y, Chen X, Shi J (2004) Phelligridin C-F: cytotoxic pyrano[3, 2-c]pran-4-one derivatives from the fungus Phellinus linteus. J Nat Prod 67:823–828CrossRefGoogle Scholar
  18. Müller WU (1996) Micronuclei: a biological indicator of radiation damage. Mutat Res 366:163–169Google Scholar
  19. Norppa H, Luomahaara S, Heikanen H, Roth S, Sorsa M, Renzi L, Lindholm C (1993) Micronucleus assay in lymphocytes as a tool to biomonitor human exposure to aneuploidogens and clastogens. Environ Health Perspect 101:139–143Google Scholar
  20. Özdemir N, Dinçer M, Koca İ, Yıldırım İ, Büyükgüngör O (2009) Methyl 2-methoxy-7-(4-methylbenzoyl)-4-oxo-6-p-tolyl-4H-furo[3, 2-c]pyran-3-carboxylate: a combined experimental and theoretical investigation. J Mol Model 15:1193–1201CrossRefGoogle Scholar
  21. Parra VR, Mierau V, Anke T, Sterner O (2006) Niveulone, a heterocyclic spiro terpenoid from the ascomycete Dasyscyphus niveus. J Antibiot 59:57–60CrossRefGoogle Scholar
  22. Ramirez A, Gatta’s GJF, Carvalho MB, Rapopport A, Saldanha PH (1999) Clinical implications of micronuclei frequency as a biomonitor for alcoholic patients with oral carcinomas. In: Varma AK (ed) Oral oncology. MacMillan, New York, pp 199–204Google Scholar
  23. Saklani A, Kutty SK (2008) Plant-derived compounds in clinical trials. Drug Discov Today 13:161–171CrossRefGoogle Scholar
  24. Scarpato R, Migliore L (1996) Comparison of spontaneous structural chromosome aberration frequency in 48 h-cultured human lymphocytes mitotically arrested by different colcemid treatments. Mutat Res 361:35–39Google Scholar
  25. Seitz HK, Poschl G, Simannowski UA (1998) Alcohol and cancer. Recent Dev Alcohol 14:67–95CrossRefGoogle Scholar
  26. Vuorelaa P, Leinonenb M, Saikkuc P, Tammelaa P, Rauhad JP, Wennberge T, Vuorela H (2004) Natural products in the process of finding new drug candidates. Curr Med Chem 11:1375–1389Google Scholar
  27. Walker PMB (1952) The mitotic index and interphase processes. Biophysics Research Unit King’s College, LondonGoogle Scholar
  28. Wang X, Bastow KF, Sun CM, Lin YL, Yu HJ, Don MJ, Wu TS, Nakamura S, Lee KH (2004) Antitumor agents. 239. Isolation, structure elucidation, total synthesis, and anti-breast cancer activity of neo-tanshinlactone from Salvia miltiorrhiza. J Med Chem 47:5816–5819CrossRefGoogle Scholar
  29. Wang X, Nakagawa-Goto K, Bastow KF, Don MJ, Lin YL, Wu TS, Lee KH (2006) Antitumor agents. 254. Synthesis and biological evaluation of novel neo-tanshinlactone analogues as potent anti-breast cancer agents. J Med Chem 49:5631–5634CrossRefGoogle Scholar
  30. Yavuz A, Topaktaş M, İstifli ES (2010) In vitro genotoxic effects of benzoyl peroxide in human peripheral lymphocytes. Turk J Biol 34:15–24Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Halil Erhan Eroğlu
    • 1
  • İrfan Koca
    • 2
  • İsmail Yıldırım
    • 3
  1. 1.Department of Biology, Faculty of Science and ArtBozok UniversityYozgatTurkey
  2. 2.Department of Chemistry, Faculty of Science and ArtBozok UniversityYozgatTurkey
  3. 3.Department of Chemistry, Faculty of ScienceErciyes UniversityKayseriTurkey

Personalised recommendations