Skip to main content
Log in

Changes in lamina propria dendritic cells on the oral administration of exogenous protein antigens during weaning

  • JAACT Special Issue
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Two critical periods of maximum exposure to antigens occur in young mammals, immediately after birth and at weaning, as a result of colonization by commensal bacteria and the ingestion of new diets. At weaning, active immune responses of antibody production against dietary proteins are known to occur, but simultaneously, oral tolerance is acquired for harmless food proteins. However, regulated mechanisms of the immune system at weaning remain to be elucidated although its immune responses may be somewhat similar to those in adulthood. Considering that tolerogenic antigen-presenting cells (APCs) are likely to be a key factor in the acquisition of oral tolerance, in the present study, we examined the changes of dendritic cells (DCs) in the lamina propria (LP) on exposure to food proteins at weaning. C57BL/6 female mice were weaned at the age of 3 weeks and orally administered 10 mg of ovalbumin (OVA) for ten consecutive days after weaning. The administration led to a decrease in the plasma level of immunoglobulin specific for OVA, suggesting the acquisition of oral tolerance. The uptake of fluorescence-labeled OVA was significantly observed for CD11c+LPDCs. When we analyzed the changes of two types of LPDCs, PDCA-1+ MHC II+ DCs and CD103+ MHC II+ DCs, ten consecutive gavages of OVA marginally, but not significantly, augmented only the frequency of PDCA-1+ MHC II+ DCs. Considering that the change of APCs likely appears immediately on the response to antigen intake, we found the statistically significant increase in the frequency of PDCA-1+ DCs, but not in that of CD103+ DCs, even after two treatments, indicating PDCA-1+ DCs to be recruited in the LP within 2 days of exposure to food proteins. These results suggest that the behavior of tolerogenic PDCA-1+ DCs may change at weaning with the removal of the immunoprotective components of maternal milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cell

DC:

Dendritic cell

LP:

Lamina propria

MLN:

Mesenteric lymph node

OVA:

Ovalbumin

PP:

Peyer’s patch

pDC:

Plasmacytoid dendritic cell

Treg:

Regulatory T

References

  • Adkins B, Jones M, Bu YR, Levy RB (2004) Neonatal tolerance revisited again: specific CTL priming in mouse neonates exposed to small numbers of semi- or fully allogeneic spleen cells. Eur J Immunol 34:1901–1909

    Article  CAS  Google Scholar 

  • Bailey M, Haverson K, Inman C, Harris C, Jones P, Corfield G, Miller B, Stokes C (2005) The development of the mucosal immune system pre- and post-weaning: balancing regulatory and effector function. Proc Nutr Soc 64:451–457

    Article  CAS  Google Scholar 

  • Belkaid Y, Oldenhove G (2008) Tuning microenvironments: induction of regulatory T cells by dendritic cells. Immunity 29:362–371

    Article  CAS  Google Scholar 

  • Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ (2007) All-trans retinoic acid mediates enhanced Treg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 204:1765–1774

    Article  CAS  Google Scholar 

  • Cantor HM, Dumont AE (1967) Hepatic suppression of sensitization to antigen absorbed into the portal system. Nature 215:744–745

    Article  CAS  Google Scholar 

  • Chirdo FG, Millington OR, Beacock-Sharp H, Mowat AM (2005) Immunomodulatory dendritic cells in intestinal lamina propria. Eur J Immunol 35:1831–1840

    Article  CAS  Google Scholar 

  • Coombes JL, Powrie F (2008) Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8:435–446

    Article  CAS  Google Scholar 

  • Coombes JL, Siddiqui KRR, Arancibia-Cárcamo CV, Hall J, Sun C-M, Belkaid Y, Powrie F (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β- and retinoic acid-dependent mechanism. J Exp Med 204:1757–1764

    Article  CAS  Google Scholar 

  • del Rio M-L, Bernhardt G, Rodriguez-Barbosa J-I, Förster R (2010) Development and functional specialization of CD103+ dendritic cells. Immunol Rev 234:268–281

    Article  CAS  Google Scholar 

  • Denning TL, Wang Y-C, Patel SR, Williams IR, Pulendran B (2007) Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8:1086–1094

    Article  CAS  Google Scholar 

  • Dubois B, Joubert G, de Agüero MG, Gouanvic M, Goubier A, Kaiserlian D (2009) Sequential role of plasmacytoid dendritic cells and regulatory T cells in oral tolerance. Gastroenterol 137:1019–1028

    Article  CAS  Google Scholar 

  • Faria AMC, Weiner HL (2005) Oral tolerance. Immunol Rev 206:232–259

    Article  CAS  Google Scholar 

  • Friedman A, Weiner H (1994) Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci USA 91:6688–6692

    Article  CAS  Google Scholar 

  • Gilliet M, Boonstra A, Paturel C, Antonenko S, Xu XL, Trinchieri G, O’Garra A, Liu YJ (2002) The development of murine plasmocytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J Exp Med 195:953–958

    Article  CAS  Google Scholar 

  • Goubier A, Dubois B, Gheit H, Joubert G, Villard-Truc F, Asselin-Paturel C, Trinchieri G, Kaiserlian D (2008) Plasmacytoid dendritic cells mediate oral tolerance. Immunity 29:464–475

    Article  CAS  Google Scholar 

  • Hoyne GF, Thomas WR (1995) T-cell responses to orally administered antigens. Study of the kinetics of lymphokine production after single and multiple feeding. Immunology 84:304–309

    CAS  Google Scholar 

  • Jaensson E, Uronen-Hansson H, Pabst O, Eksteen B, Tian J, Coombes JL, Berg PL, Davidsson T, Powrie F, Johansson-Lindbom B, Agace WW (2008) Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med 205:2139–2149

    Article  CAS  Google Scholar 

  • Jang MH, Sougawa N, Tanaka T, Hirata T, Hiroi T, Tohya K, Guo Z, Umemoto E, Ebisuno Y, Yang B-G, Seoh J-Y, Lipp M, Kiyono H, Miyasaka M (2006) CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J Immunol 176:803–810

    CAS  Google Scholar 

  • Johansson-Lindbom B, Svensson M, Pabst O, Palmqvist C, Marquez G, Förster R, Agace WW (2005) Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J Exp Med 202:1063–1073

    Article  CAS  Google Scholar 

  • Kelsall BL, Leon F (2005) Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatory bowel disease. Immunol Rev 206:132–148

    Article  CAS  Google Scholar 

  • Kraus TA, Brimnes J, Muong C, Liu JH, Moran TM, Tappenden KA, Boros P, Mayer L (2005) Induction of mucosal tolerance in Peyer’s patch-deficient, ligated small bowel loops. J Clin Invest 115:2234–2243

    Article  CAS  Google Scholar 

  • Li W, Chou ST, Wang C, Kuhr CS, Perkins JD (2004) Role of the liver in peripheral tolerance: induction through oral antigen feeding. Am J Transpl 4:1574–1582

    Article  CAS  Google Scholar 

  • Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K, McKenna HJ (1996) Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 184:1953–1962

    Article  CAS  Google Scholar 

  • Marth T, Strober W, Seder RA, Kelsall BL (1997) Regulation of transforming growth factor-beta production by interleukin-12. Eur J Immunol 27:1213–1220

    Article  CAS  Google Scholar 

  • Milling S, Yrlid U, Cerovic V, MacPherson G (2010) Subsets of migrating intestinal dendritic cells. Immunol Rev 234:259–267

    Article  CAS  Google Scholar 

  • Mowat AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3:331–341

    Article  CAS  Google Scholar 

  • Peng HJ, Turner MW, Strobel S (1989) Failure to induce oral tolerance to protein antigens in neonatal mice can be corrected by transfer of adult spleen-cells. Pediatr Res 26:486–490

    Article  CAS  Google Scholar 

  • Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367

    Article  CAS  Google Scholar 

  • Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, Orenstein JM, Smith PD (2005) Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest 115:66–75

    CAS  Google Scholar 

  • Spahn TW, Fontana A, Faria AM, Slavin AJ, Eugster HP, Zhang X, Koni PA, Ruddle NH, Flavell RA, Rennert PD, Weiner HL (2001) Induction of oral tolerance to cellular immune responses in the absence of Peyer’s patches. Eur J Immunol 31:1278–1287

    Article  CAS  Google Scholar 

  • Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711

    Article  CAS  Google Scholar 

  • Strobel S (1995) Oral tolerance: ‘of mice and men’. Acta Paediatr Jpn 37:133–140

    Article  CAS  Google Scholar 

  • Strobel S, Mowat AM (1998) Immune responses to dietary antigens: oral tolerance. Immunol Today 19:173–181

    Article  CAS  Google Scholar 

  • Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, Belkaid Y (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. J Exp Med 204:1775–1785

    Article  CAS  Google Scholar 

  • Vega-Lopez MA, Bailey M, Telemo E, Stokes CR (1995) Effect of early weaning on the development of immune cells in the pig small-intestine. Veterin Immunol Immunopath 44:319–327

    Article  CAS  Google Scholar 

  • Viney JL, Mowat AM, O’Malley JM, Williamson E, Fanger N (1998) Expanding dendritic cells in vivo enhances the induction of oral tolerance. J Immunol 160:5815–5825

    CAS  Google Scholar 

  • Weiner HL (1997) Oral tolerance: Immune mechanisms and treatment of autoimmune diseases. Immunol Today 18:335–343

    Article  CAS  Google Scholar 

  • Weiner HL, Friedman A, Miller A, Khoury SJ, Al-Sabbagh A, Santos L, Sayegh M, Nussenblatt RB, Trentham DE, Hafler DA (1994) Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu Rev Immunol 12:809–837

    Article  CAS  Google Scholar 

  • Worbs T, Bode U, Yan S, Hoffmann MW, Hintzen G, Bernhardt G, Förster R, Pabst O (2006) Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med 203:519–527

    Article  CAS  Google Scholar 

  • Yang R, Liu Q, Grosfeld JL, Pescovitz MD (1994) Intestinal venous drainage through the liver is a prerequisite for oral tolerance induction. J Pediatr Surg 29:1145–1148

    Article  CAS  Google Scholar 

  • Yoshida T, Hachimura S, Kaminogawa S (1997) The oral administration of low-dose antigen induces activation followed by tolerization, while high-dose antigen induces tolerance without activation. Clin Immunol Immunopathol 82:207–215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Exploratory Research (No. 15658108) to F. T. from the Ministry of Education, Science, Sports, and Culture of Japan, and also in part by a Grant to F. T. from Japan Dairy Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumito Tani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohue, R., Nakamoto, M., Kitabatake, N. et al. Changes in lamina propria dendritic cells on the oral administration of exogenous protein antigens during weaning. Cytotechnology 64, 221–230 (2012). https://doi.org/10.1007/s10616-011-9351-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-011-9351-z

Keywords

Navigation