Skip to main content

Advertisement

Log in

A whole-mechanical method to establish human embryonic stem cell line HN4 from discarded embryos

  • Method in Cell Science
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Since the first human embryonic stem cell (hESC) line was generated by Thomson et al. (in Science 282:1145–1147, 1998), hundreds of hESC lines have been reported by different labs, providing resources for basic research and regenerative medicine as well. However it has been widely recognized that hESC lines varied on their properties, in terms of gene expression profile, epigenetic modify profile, and differentiation tendency. Generation of more hESC lines will largely enhance our knowledge of hESCs innate character. In this current work, we reported the generation of HN4, a hESC line derived from grade III IVF human embryo by using a mixture of human foreskin fibroblast (HFF) and mouse embryonic fibroblast (MEF) as feeder layers, and a whole-mechanical method in inner cell mass (ICM) isolation. HN4 satisfied the criteria of hESCs pluripotency, with high expression of hESC surface markers (SSEA-3, SSEA-4, TRA-1-60, TRA-1-81), transcription factors (OCT-4, NANOG, REX-1), and alkaline phosphatase. It is able to differentiate to three germ layer derivatives when cultured in vitro, or in teratoma formation. Moreover, it displayed promising potential in neural differentiation under a proper culture condition, suggesting the advantage of HN4 in further investigation. Additionally, the whole-mechanical protocol for ICM isolation facilitates hESC line generation for its ease to handle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amit M, Margulets V, Segev H, Shariki K, Laevsky I, Coleman R et al (2003) Human feeder layers for human embryonic stem cells. Biol Reprod 68:2150–2156

    Article  CAS  Google Scholar 

  • Balaban B, Urman B, Sertac A, Alatas C, Aksoy S, Mercan R (2000) Blastocyst quality affects the success of blastocyst-stage embryo transfer. Fertil Steril 74:282–287

    Article  CAS  Google Scholar 

  • Carpenter MK, Inokuma MS, Denham J, Mujtaba T, Chiu CP, Rao MS (2001) Entrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 172:383–397

    Article  CAS  Google Scholar 

  • Carpenter MK, Rosler E, Rao MS (2003) Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells 5:79–88

    Article  CAS  Google Scholar 

  • Cheng L, Hammond H, Ye Z, Zhan X, Dravid G (2003) Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells 21:131–142

    Article  CAS  Google Scholar 

  • Choo A, Padmanabhan J, Chin A, Fong WJ, Oh SK (2006) Immortalized feeders for the scale-up of human embryonic stem cells in feeder and feeder-free conditions. J Biotechnol 122:130–141

    Article  CAS  Google Scholar 

  • Dvash T, Ben-Yosef D, Eiges R (2006) Human embryonic stem cells as a powerful tool for studying human embryogenesis. Pediatr Res 60:111–117

    Article  Google Scholar 

  • Familari M, Selwood L (2006) The potential for derivation of embryonic stem cells in vertebrates. Mol Reprod Dev 73:123–131

    Article  CAS  Google Scholar 

  • Findikli N, Kahraman S, Akcin O, Sertyel S, Candan Z (2005) Establishment and characterization of new human embryonic stem cell lines. Reprod Biomed Online 10:617–627

    Article  Google Scholar 

  • Heins N, LindahI A, Karlsson U, Rehnström M, Caisander G, Emanuelsson K et al (2006) Clonal derivation and characterization of human embryonic stem cell lines. J Biotechnol 122:511–520

    Article  CAS  Google Scholar 

  • Hong S, Kang UJ, Isacson O, Kim KS (2008) Neural precursors derived from human embryonic stem cells mainstain long-term proliferation without losing the potential to differentiate into all three neural lineages, including dopaminergic neurons. J Neurochem 104:316–324

    CAS  Google Scholar 

  • Hovatta O, Mikkola M, Gertow K, Strömberg AM, Inzunza J, Hreinsson J et al (2003) A culture system using foreskin fibroblasts as a feeder cells allow production of human embryonic stem cells. Hum Reprod 18:1404–1409

    Article  Google Scholar 

  • Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M et al (2000) Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol Med 6:88–95

    CAS  Google Scholar 

  • Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K et al (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4694–4705

    Article  CAS  Google Scholar 

  • Lerou PH, Daley GQ (2005) Therapeutic potential of embryonic stem cells. Blood Rev 19:321–331

    Article  Google Scholar 

  • Lerou PH, Yabuuchi A, Huo H, Miller JD, Boyer LF, Schlaeger TM et al (2008) Derivation and maintenance of human embryonic stem cells from poor-quality in vitro fertilization embryos. Nat Protoc 3:923–933

    Article  CAS  Google Scholar 

  • Li B, Peng QP, Lu WY, Xu W, Jin YX, Huang YH (2008) Growth state of human embryonic stem cells on mixed feeder layers with mouse embryonic fibroblasts and human foreskin fibroblasts at different ratios. CRTER 12:424–428

    CAS  Google Scholar 

  • Ma W, Tavakoli T, Derby E, Serebryakova Y, Rao MS, Mattson MP (2008) Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells. BMC Dev Biol 8:90

    Article  Google Scholar 

  • Mandal A, Tipnis S, Pal R, Ravindran G, Bose B, Patki A et al (2006) Characterization and in vitro differentiation potential of a new human embryonic stem cell line, ReliCellhES1. Differentiation 74:81–90

    Article  CAS  Google Scholar 

  • Mummery C (2004) Stem cell research: immortality or healthy old age? Eur J Endocrinol 151(Suppl. 3):U7–U12

    Article  CAS  Google Scholar 

  • Park JH, Kim SJ, Oh EJ, Moon SY, Roh SI, Kim CG et al (2003) Establishment and maintenance of human embryonic stem cells on STO, a permanently growing cell line. Biol Reprod 69:2007–2014

    Article  CAS  Google Scholar 

  • Qian K, Chen H, Zhang SM, Zhu GJ (2006) Human fibroblast cell supporting undifferentiated human embryonic stem cells proliferation in vitro. Acta Med Univ Sci Technol Huazhong 35:462–464

    CAS  Google Scholar 

  • Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    Article  CAS  Google Scholar 

  • Richards M, Fong CY, Chan WK, Wong PC, Bongso A (2002) Human feeders support prolonged undifferentiated growth of human inner cells masses and embryonic stem cell lines. Nat Biotechnol 20:933–936

    Article  CAS  Google Scholar 

  • Richards M, Tan S, Fong CY, Biswas A, Chan WK, Bongso A (2003) Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells 21:546–556

    Article  CAS  Google Scholar 

  • Robertson EJ (1987) Embryo-derived stem cell lines. In: Robertson EJ (ed) Teratocarcinomas and embryonic stem cells. IRL Press, Oxford, pp 71–112

    Google Scholar 

  • Shin S, Mitalipova M, Noggle S, Tibbitts D, Venable A, Rao P et al (2006) Long-term proliferation of human embryonic stem cell-derived neuroepithelial cells using defined adherent culture conditions. Stem Cells 24:125–138

    Article  Google Scholar 

  • Srivastava D, Ivey KN (2006) Potential of stem cell-based therapies for heart disease. Nature 441:1097–1099

    Article  CAS  Google Scholar 

  • Stojkovic P, Lako M, Stewart R, Przyborski S, Armstrong L, Evans J et al (2005) An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells 23:306–314

    Article  CAS  Google Scholar 

  • Ström S, Inzunza J, Grinnemo KH, Holmberg K, Matilainen E, Strömberg AM et al (2007) Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Human Reprod 22:3051–3058

    Article  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  Google Scholar 

  • Urban SV, Kiss J, Vas V, Kovacs J, Uher F (2006) Stem cell therapy for diabetes mellitus: progress, prospects and challenges. Orv Hetil 147:791–797

    Google Scholar 

  • Van de Stolpe A, van den Brink S, van Rooijen M, Ward-van Oostwaard D, van Inzen W, Slaper-Cortenbach I et al (2005) Human embryonic stem cells: towards therapies for cardiac disease. Derivation of a Dutch human embryonic stem cell line. Reprod Biomed Online 11:476–485

    Article  Google Scholar 

  • Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129–1133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Yan Ding or Yuan-Hua Huang.

Additional information

Lan Xu contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Xu, L., Lu, WY. et al. A whole-mechanical method to establish human embryonic stem cell line HN4 from discarded embryos. Cytotechnology 62, 509–518 (2010). https://doi.org/10.1007/s10616-010-9311-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-010-9311-z

Keywords

Navigation