Skip to main content
Log in

Indirect co-culture with tenocytes promotes proliferation and mRNA expression of tendon/ligament related genes in rat bone marrow mesenchymal stem cells

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Recent evidences have suggested that humoral factors released from the appropriate co-cultured cells influenced the expansion and differentiation of mesenchymal stem cells (MSCs). However, little is known about the proliferation and differentiation of MSCs subjected to co-culture condition with tenocytes. In this study, we aimed to establish a co-culture system of MSCs and tenocytes and investigate the proliferation and tendon/ligament related gene expression of MSCs. MTT assay was used to detect the expansion of MSCs. Semi-quantitative RT-PCR was performed to investigate the expression of proliferation associated c-fos gene and tendon/ligament related genes, including type I collagen (Col I), type III collagen (Col III), tenascin C and scleraxis. Significant increase in MSCs expansion was observed after 3 days of co-culture with tenocytes. The c-fos gene expression was found distinctly higher than for control group on day 4 and day 7 of co-culture. The mRNA expression of four tendon/ligament related genes was significantly up-regulated after 14 days of co-culture with tenocytes. Thus, our research indicates that indirect co-culture with tenocytes promotes the proliferation and mRNA expression of tendon/ligament related genes in MSCs, which suggests a directed differentiation of MSCs into tendon/ligament.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aaron RK, Ciombor DM (1996) Acceleration of experimental endochondral ossification by biophysical stimulation of the progenitor cell pool. J Orthop Res 14:582–589. doi:10.1002/jor.1100140412

    Article  CAS  Google Scholar 

  • Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL (2002) Cell differentiation by mechanical stress. FASEB J 16:270–272. doi:10.1096/fj.01-0656fje

    CAS  Google Scholar 

  • Angle P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim Biophys Acta 1072:129–157. doi:10.1016/0304-419X(91)90011-9

    Google Scholar 

  • Awad HA, Boivin GP, Dressler MR, Smith FN, Young RG, Butler DL (2003) Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res 21:420–431. doi:10.1016/S0736-0266(02)00163-8

    Article  CAS  Google Scholar 

  • Ball SG, Shuttleworth AC, Kielty CM (2004) Direct cell contact influences bone marrow mesenchymal stem cell fate. Int J Biochem Cell Biol 36:714–727. doi:10.1016/j.biocel.2003.10.015

    Article  CAS  Google Scholar 

  • Brazelton TR, Rossi FM, Keshet GI, Blau HM (2002) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779. doi:10.1126/science.290.5497.1775

    Article  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cell for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347. doi:10.1002/jcp.21200

    Article  CAS  Google Scholar 

  • Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem cells 25:2739–2749. doi:10.1634/stemcells.2007-0197

    Article  CAS  Google Scholar 

  • Chen YJ, Huang CH, Lee IC, Lee YT, Chen MH, Young TH (2008) Effects of cyclic mechanical stretching on the mRNA expression of tendon/ligament-related and osteoblast-specific genes in human mesenchymal stem cells. Connect Tissue Res 49:7–14. doi:10.1080/03008200701818561

    Article  CAS  Google Scholar 

  • Chen WH, Lai MT, Wu AT, Wu CC, Gelovani JG, Lin CT, Hung SC, Chiu WT, Deng WP (2009) In vitro stage-specific chondrogenesis of mesenchymal stem cells committed to chondrocytes. Arthritis Rheum 60:450–459. doi:10.1002/art.24265

    Article  CAS  Google Scholar 

  • Chiquet-Ehrismann R, Tucker RP (2004) Connective tissues: signalling by tenascins. Int J Biochem Cell Biol 36:1085–1089. doi:10.1016/j.biocel.2004.01.007

    Article  CAS  Google Scholar 

  • Choi SC, Kim SJ, Choi JH, Park CY, Shim WJ, Lim DS (2008) Fibroblast growth factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells by the activation of the PI3K-Akt and ERK1/2 signaling pathways. Stem Cells Dev 17:725–736. doi:10.1089/scd.2007.0230

    Article  CAS  Google Scholar 

  • Csaki C, Matis U, Mobasheri A, Shakibaei M (2009) Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation. Histochem Cell Biol 131:251–266. doi:10.1007/s00418-008-0524-6

    Article  CAS  Google Scholar 

  • Dahlgren LA, Mohammed HO, Nixon AJ (2005) Temporal expression of growth factors and matrix molecules in healing tendon lesions. J Orthop Res 23:84–92. doi:10.1016/j.orthres.2004.05.007

    Article  CAS  Google Scholar 

  • Farng E, Urdaneta AR, Barba D, Esmende S, McAllister DR (2008) The effects of GDF-5 and uniaxial strain on mesenchymal stem cells in 3-D culture. Clin Orthop Relat Res 466:1930–1937. doi:10.1007/s11000-00800300-X

    Article  Google Scholar 

  • Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, Krettek C, Van Griensven M (2005) Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng 11:41–49. doi:10.1089/ten.2005.11.41

    Article  CAS  Google Scholar 

  • Hsia HC, Schwarzbauer JE (2005) Meet the tenascins: multifunctional and mysterious. J Biol Chem 280:26641–26644. doi:10.1074/jbc.R500005200

    Article  CAS  Google Scholar 

  • Juncosa-Melvin N, Boivin GP, Galloway MT, Gooch C, West JR, Sklenka AM, Butler DL (2005) Effects of cell-to-collagen ratio in mesenchymal stem cell-seeded implants on tendon repair biomechanics and histology. Tissue Eng 11:448–457. doi:10.1089/ten.2005.11.448

    Article  CAS  Google Scholar 

  • Juncosa-Melvin N, Shearn JT, Boivin GP, Gooch C, Galloway MT, West JR, Nirmalanandhan VS, Bradica G, Butler DL (2006) Effects of mechanical stimulation on the biomechanics and histology of stem sell—collagen sponge constructs for rabbit patellar tendon repair. Tissue Eng 12:2291–2300. doi:10.1089/ten.2006.12.2291

    Article  CAS  Google Scholar 

  • Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270:16483–16486

    CAS  Google Scholar 

  • Krampera M, Marconi S, Pasini A, Galiè M, Rigotti G, Mosna F, Tinelli M, Lovato L, Anghileri E, Andreini A, Pizzolo G, Sbarbati A, Bonetti B (2007) Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone 40:382–390. doi:10.1016/j.bone.2006.09.006

    Article  CAS  Google Scholar 

  • Kuo CK, Tuan RS (2008) Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A 14:1615–1627. doi:10.1089/ten.tea.2006.0415

    Article  CAS  Google Scholar 

  • Lange C, Bassler P, Lioznov MV, Bruns H, Kluth D, Zander AR, Fiegel HC, Woo SL, Hidebrand K, Watanabe N, Fenwick JA, Papageorgiou CD, Wang JH (1999) Tissue engineering of ligament and tendon healing. Clin Orthop Relat Res Suppl 367:312–323

    Article  Google Scholar 

  • Lee IC, Wang JH, Lee YT, Young TH (2007) The differentiation of mesenchymal stem cells by mechanical stress or/and co-culture system. Biochem Biophys Res Commun 352:147–152. doi:10.1016/j.bbrc.2006.10.170

    Article  CAS  Google Scholar 

  • Liu SH, Yang RS, al-Shaikh R, Lane JM (1995) Collagen in tendon, ligament and bone healing. Clin Orthop Relat Res 318:265–278

    Google Scholar 

  • Liu SB, Hu PZ, Hou Y, Li P, Cao W, Tian Q (2009) Recombinant human bone morphogenetic protein-2 promotes the proliferation of mesenchymal stem cells in vivo and in vitro. Chin Med J (Engl) 122:839–843

    CAS  Google Scholar 

  • Lyngstadaas SP, Lundberg E, Ekdahl H, Andersson C, Gestrelius S (2001) Autocrine growth factors in human periodontal ligament cells cultured on enamel matrix derivative. J Clin Periodontol 28:181–188. doi:10.1034/j.1600-051x.2001.028002181.x

    Article  CAS  Google Scholar 

  • Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R (1997) Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 138:4456–4462

    Article  CAS  Google Scholar 

  • Mizuno N, Ozeki Y, Shiba H, Kajiya M, Nagahara T, Takeda K, Kawaguchi H, Abiko Y, Kurihara H (2008) Humoral factors released from human periodontal ligament cells influence calcification and proliferation in human bone marrow mesenchymal stem cells. J Periodontol 79:2361–2370. doi:10.1902/jop/2008.070577

    Article  CAS  Google Scholar 

  • Oldfield SF, Evans DJR (2003) Tendon morphogenesis in the developing avian limb: plasticity of fetal tendon fibroblasts. J Anat 202:153–164. doi:10.1046/j.1469-7580.2003.00145.x

    Article  Google Scholar 

  • Ouyang HW, Goh JC, Thambyah A, Teoh SH, Lee EH (2003) Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit achilles tendon. Tissue Eng 9:431–439. doi:10.1089/107632703322066615

    Article  CAS  Google Scholar 

  • Ouyang HW, Goh JC, Lee EH (2004) Viability of allogeneic bone marrow stromal cells following local delivery into patella tendon in rabbit model. Cell Transplant 13:649–657

    Article  Google Scholar 

  • Ouyang HW, Cao T, Zou XH, Heng BC, Wang LL, Song XH, Huang HF (2006) Mesenchymal stem cell sheets revitalize nonviable dense grafts: implications for repair of large-bone and tendon defects. Transplantation 82:170–174. doi:10.1097/01.tp.0000226232.79106.72

    Article  Google Scholar 

  • Ovitt CE, Ruther U (1989) The proto-oncogene c-fos: structure, expression, and functional aspects. Oxf Surv Eukaryot Genes 6:33–51

    CAS  Google Scholar 

  • Pak HN, Qayyum M, Kim DT, Hamabe A, Miyauchi Y, Lill MC, Frantzen M, Takizawa K, Chen LS, Fishbein MC, Sharifi BG, Chen PS, Makkar R (2003) Mesenchymal stem cell injection induces cardiac nerve sprouting and increased tenascin expression in a Swine model of myocardial infarction. J Cardiovasc Electrophysiol 14:841–848. doi:10.1046/j.1540-8167.2003.03124.x

    Article  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147. doi:10.1126/science.284.5411.143

    Article  CAS  Google Scholar 

  • Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, Lassar A, Tabin CJ (2001) Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 128:3855–3866

    CAS  Google Scholar 

  • Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155. doi:10.1016/S0140-6736(04)16627-0

    Article  CAS  Google Scholar 

  • Song G, Luo Q, Qin J, Wang B, Cai S (2004) Expression of integrin beta1 and its roles on adhesion between different cell cycle hepatocellular carcinoma cells (SMMC-7721) and human umbilical vein endothelial cells. Colloids Surf B Biointerfaces 34:247–252. doi:10.1016/j.colsurfb.2004.01.009

    Article  CAS  Google Scholar 

  • Song G, Ju Y, Soyama H, Ohashi T, Sato M (2007a) Regulation of cyclic longitudinal mechanical stretch on proliferation of human bone marrow mesenchymal stem cells. Mol Cell Biomech 4:201–210

    Google Scholar 

  • Song G, Ju Y, Shen X, Luo Q, Shi Y, Qin J (2007b) Mechanical stretch promotes proliferation of rat bone marrow mesenchymal stem cells. Colloids Surf B Biointerfaces 58:271–277. doi:10.1016/j.colsurfb.2007.04.001

    Article  CAS  Google Scholar 

  • Sun H, Qu Z, Guo Y, Zang G, Yang B (2007) In vitro and in vivo effects of rat kidney vascular endothelial cells on osteogenesis of rat bone marrow mesenchymal stem cells growing on polylactide-glycoli acid (PLGA) scaffolds. Biomed Eng Online 6:41. doi:10.1186/1475-925X-6-41

    Article  CAS  Google Scholar 

  • Tamama K, Fan VH, Griffith LG, Blair HC, Wells A (2006) Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells 24:686–695. doi:10.1634/stemcells.2005-0176

    Article  CAS  Google Scholar 

  • Violini S, Ramelli P, Pisani LF, Gorni C, Mariani P (2009) Horse bone marrow mesenchymal stem cells express embryo stem cell marker and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biol 10:29. doi:10.1186/1471-2121-10-29

    Article  CAS  Google Scholar 

  • Wang T, Xu Z, Jiang W, Ma A (2006) Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. Int J Cardiol 109:74–81. doi:10.1016/j.ijcard.2005.05.072

    Article  Google Scholar 

  • Woo SL, Hidebrand K, Watanabe N, Fenwick JA, Papageorgiou CD, Wang JH (1999) Tissue engineering of ligament and tendon healing. Clin Orthop Relat Res 367(Suppl):S312–S323

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Natural National Science Foundation of China (No. 30770530), Chongqing Natural Science Foundation (CSTC-2009BB5040) and the 111 Project (No. 06023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanbin Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Q., Song, G., Song, Y. et al. Indirect co-culture with tenocytes promotes proliferation and mRNA expression of tendon/ligament related genes in rat bone marrow mesenchymal stem cells. Cytotechnology 61, 1–10 (2009). https://doi.org/10.1007/s10616-009-9233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-009-9233-9

Keywords

Navigation